scispace - formally typeset
Search or ask a question
Author

Edward J. Garnero

Bio: Edward J. Garnero is an academic researcher from Arizona State University. The author has contributed to research in topics: Core–mantle boundary & Mantle (geology). The author has an hindex of 53, co-authored 134 publications receiving 8558 citations. Previous affiliations of Edward J. Garnero include California Institute of Technology & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
13 Sep 1996-Science
TL;DR: The presence of an intermittent layer at the base of Earth9s mantle with a maximum thickness near 40 kilometers and a compressional wave velocity depressed by ∼10 percent compared with that of the overlying mantle is most simply explained as the result of partial melt at this depth.
Abstract: The presence of an intermittent layer at the base of Earth9s mantle with a maximum thickness near 40 kilometers and a compressional wave velocity depressed by ∼10 percent compared with that of the overlying mantle is most simply explained as the result of partial melt at this depth. Both the sharp upper boundary of this layer (

562 citations

Journal ArticleDOI
21 Jan 2011-Science
TL;DR: Reinterpreted Apollo-era seismic data from the Moon reveal a solid inner core and a fluid outer core, overlain by a partially molten boundary layer, consistent with a volatile-depleted interior.
Abstract: Despite recent insight regarding the history and current state of the Moon from satellite sensing and analyses of limited Apollo-era seismic data, deficiencies remain in our understanding of the deep lunar interior. We reanalyzed Apollo lunar seismograms using array-processing methods to search for the presence of reflected and converted seismic energy from the core. Our results suggest the presence of a solid inner and fluid outer core, overlain by a partially molten boundary layer. The relative sizes of the inner and outer core suggest that the core is ~60% liquid by volume. Based on phase diagrams of iron alloys and the presence of partial melt, the core probably contains less than 6 weight % of lighter alloying components, which is consistent with a volatile-depleted interior.

406 citations

Journal ArticleDOI
02 Apr 1998-Nature
TL;DR: Recent seismological work has revealed new structures in the boundary layer between the Earth's core and mantle that are altering and expanding perspectives of the role this region plays in both core and the mantle dynamics.
Abstract: Recent seismological work has revealed new structures in the boundary layer between the Earth's core and mantle that are altering and expanding perspectives of the role this region plays in both core and mantle dynamics. Clear challenges for future research in seismological, experimental, theoretical and computational geophysics have emerged, holding the key to understanding both this dynamic system and geological phenomena observed at the Earth's surface.

405 citations

Journal ArticleDOI
02 May 2008-Science
TL;DR: In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber and two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material.
Abstract: Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.

391 citations

Journal ArticleDOI
TL;DR: Two large zones through which seismic waves travel unusually slowly are found at the base of Earth's mantle, and these zones are thermally and chemically distinct from the surrounding mantle and may be a source for mantle plumes as mentioned in this paper.
Abstract: Two large zones through which seismic waves travel unusually slowly are found at the base of Earth's mantle. These zones are thermally and chemically distinct from the surrounding mantle and may be a source for mantle plumes.

273 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, a new empirical traveltime curves for the major seismic phases have been derived from the catalogues of the International Seismological Centre by relocating events by using P readings, depth phases and the iasp91 traveltimes, and then re-associating phase picks.
Abstract: SUMMARY New empirical traveltime curves for the major seismic phases have been derived from the catalogues of the International Seismological Centre by relocating events by using P readings, depth phases and the iasp91 traveltimes, and then re-associating phase picks. A smoothed set of traveltime tables is extracted by a robust procedure which gives estimates of the variance of the traveltimes for each phase branch. This set of smoothed empirical times is then used to construct a range of radial velocity profiles, which are assessed against a number of different measures of the level of fit between the empirical times and the predictions of the models. These measures are constructed from weighted sums of L2 misfits for individual phases. The weights are chosen to provide a measure of the probable reliability of the picks for the different phases. A preferred model, ak135, is proposed which gives a significantly better fit to a broad range of phases than is provided by the iasp91 and sp6 models. The differences in velocity between ak135 and these models are generally quite small except at the boundary of the inner core, where reduced velocity gradients are needed to achieve satisfactory performance for PKP differential time data. The potential resolution of velocity structure has been assessed with the aid of a non-linear search procedure in which 5000 models have been generated in bounds about ak135. Msfit calculations are performed for each of the phases in the empirical traveltime sets, and the models are then sorted using different overall measures of misfit. The best 100 models for each criterion are displayed in a model density plot which indicates the consistency of the different models. The interaction of information from different phases can be analysed by comparing the different misfit measures. Structure in the mantle is well resolved except at the base, and ak135 provides a good representation of core velocities.

2,925 citations

Book
24 Feb 2012
TL;DR: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software.
Abstract: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Followingare chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

2,372 citations

Journal ArticleDOI
07 May 2004-Science
TL;DR: Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%.
Abstract: In situ x-ray diffraction measurements of MgSiO3 were performed at high pressure and temperature similar to the conditions at Earth9s core-mantle boundary. Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%. The origin of the D″ seismic discontinuity may be attributed to this post-perovskite phase transition. The new phase may have large elastic anisotropy and develop preferred orientation with platy crystal shape in the shear flow that can cause strong seismic anisotropy below the D″ discontinuity.

1,211 citations