scispace - formally typeset
Search or ask a question
Author

Edward J. Nowak

Other affiliations: GlobalFoundries, Microsoft
Bio: Edward J. Nowak is an academic researcher from IBM. The author has contributed to research in topics: Field-effect transistor & Gate oxide. The author has an hindex of 58, co-authored 494 publications receiving 11100 citations. Previous affiliations of Edward J. Nowak include GlobalFoundries & Microsoft.


Papers
More filters
Patent
03 Jun 2003
TL;DR: In this article, a device structure and method for forming fin (210) Field Effect Transistors (FETs) from bulk semiconductor wafers (200) while providing improved wafer to wafer device uniformity.
Abstract: The present invention thus provides a device structure and method for forming fin (210) Field Effect Transistors (FETs) from bulk semiconductor wafers (200) while providing improved wafer to wafer device uniformity. Specifically, the invention provides a height control layer (212), such as a damaged portion of the substrate (200) or a marker layer, which provides uniformity of fin height. Additionally, the invention provides provides isolation (214) between fins (210) which also provides for optimization and narrowing of fin width by selective oxidation of a portion (212) of the substrate relative to an oxidized portion (216) of the fin sidewalk. The device structure and methods of the present invention thus provide the advantages of uniform finFET fabrication while using cost effect bulk wafers.

261 citations

Proceedings ArticleDOI
08 Dec 2002
TL;DR: This definition of I/sub eff/ accurately captures the delay behavior of non-traditionally scaled devices, where mobility and V/sub T//V/sub dd/ are scaled in neither a regular nor uniform manner.
Abstract: A simple but accurate expression for the effective drive current, I/sub eff/, for CMOS inverter delay is obtained. We show that the choice I/sub eff/=(I/sub H/+I/sub L/)/2, where I/sub L/=I/sub ds/(V/sub gs/=V/sub dd//2,V/sub ds/=V/sub dd/), and I/sub H/=I/sub ds/(V/sub gs/=V/sub dd/,V/sub ds/=V/sub dd//2) is defined, accurately predicts inverter delay when tested against compact models over a variety of conditions and against hardware results in 90 nm node technology. Furthermore, this definition of I/sub eff/ accurately captures the delay behavior of non-traditionally scaled devices, where mobility and V/sub T//V/sub dd/ are scaled in neither a regular nor uniform manner.

228 citations

Patent
04 Dec 2001
TL;DR: In this paper, the authors presented a method for forming the same that results in Fin Field Effect Transistors having different gains without negatively impacting device density, which is of particular application to the design and fabrication of a Static Random Access Memory (SRAM) cell.
Abstract: The present invention provides a device design and method for forming the same that results in Fin Field Effect Transistors having different gains without negatively impacting device density. The present invention forms relatively low gain FinFET transistors in a low carrier mobility plane and relatively high gain FinFET transistors in a high carrier mobility plane. Thus formed, the FinFETs formed in the high mobility plane have a relatively higher gain than the FinFETs formed in the low mobility plane. The embodiments are of particular application to the design and fabrication of a Static Random Access Memory (SRAM) cell. In this application, the bodies of the n-type FinFETs used as transfer devices are formed along the {110} plane. The bodies of the n-type FinFETs and p-type FinFETs used as the storage latch are formed along the {100}. Thus formed, the transfer devices will have a gain approximately half that of the n-type storage latch devices, facilitating proper SRAM operation.

227 citations

Patent
19 Mar 2003
TL;DR: In this paper, a method and structure for a transistor that includes an insulator and a silicon structure on the insulator is presented, where a first gate is positioned on a first side of the central portion of the silicon structure.
Abstract: A method and structure for a transistor that includes an insulator and a silicon structure on the insulator. The silicon structure includes a central portion and Fins extending from ends of the central portion. A first gate is positioned on a first side of the central portion of the silicon structure. A strain-producing layer could be between the first gate and the first side of the central portion of the silicon structure and a second gate is on a second side of the central portion of the silicon structure.

216 citations

Patent
28 Jan 2002
TL;DR: In this article, a method and system for generating a set of FinFET shapes is presented, where the set of shapes is generated coincident with a gate in an FET layout.
Abstract: A method and system for generating a set of FinFET shapes. The method and system locate a gate in an FET layout. The set of FinFET shapes is generated coincident with the gate. The method and system can further create a FinFET layout by modifying the FET layout to include the set of FinFET shapes.

191 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
Yuan Taur1, Tak H. Ning1
01 Jan 2016
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,680 citations

Proceedings ArticleDOI
18 Nov 2002
TL;DR: It is argued that a complex integrated circuit can be viewed as a silicon PUF and a technique to identify and authenticate individual integrated circuits (ICs) is described.
Abstract: We introduce the notion of a Physical Random Function (PUF). We argue that a complex integrated circuit can be viewed as a silicon PUF and describe a technique to identify and authenticate individual integrated circuits (ICs).We describe several possible circuit realizations of different PUFs. These circuits have been implemented in commodity Field Programmable Gate Arrays (FPGAs). We present experiments which indicate that reliable authentication of individual FPGAs can be performed even in the presence of significant environmental variations.We describe how secure smart cards can be built, and also briefly describe how PUFs can be applied to licensing and certification applications.

1,644 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Patent
17 Mar 2009
TL;DR: The 3Dimensional Structure (3DS) Memory (100) as mentioned in this paper is a three-dimensional structure (3D) memory that allows physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized.
Abstract: A Three Dimensional Structure (3DS) Memory (100) allows for physical separation of the memory circuits (103) and the control logic circuit (101) onto different layers (103) such that each layer may be separately optimized. One control logic circuit (101) suffices for several memory circuits (103), reducing cost. Fabrication of 3DS memory (100) involves thinning of the memory circuit (103) to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections (105) are used. The 3DS memory (100) manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.

1,212 citations