scispace - formally typeset
Search or ask a question

Showing papers by "Edward L. Wright published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmology data sets.
Abstract: We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background (CMB) anisotropy, the baryon acoustic oscillation (BAO) scale, and the Hubble constant, the matter and energy densities, bh 2 , ch 2 , and , are each determined to a precision of 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to k = 0.0027 +0.0039 0.0038 ; the summed mass of neutrinos is limited to P m < 0.44 eV (95% CL); and the number of relativistic species is found to lie within Ne = 3.84±0.40, when the full data are analyzed. The joint constraint on Ne and the primordial helium abundance, YHe, agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev‐Zel’dovich eect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe. Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter, space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes

5,488 citations


Journal ArticleDOI
TL;DR: The final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission are presented in this paper, where the authors present a highly constrained Lambda-CDM cosmological model with precise and accurate parameters.
Abstract: We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = −0.0027+0.0039/−0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter Lambda-CDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further.With no significant anomalies and an adequate goodness of fit, the inflationary flat Lambda-CDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.

2,622 citations


Journal ArticleDOI
TL;DR: The WERGA project as mentioned in this paper is a dedicated WISE Enhanced Resolution Galaxy Atlas (WERGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog.
Abstract: The Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at mid-infrared wavelengths 3.4 μm, 4.6 μm, 12 μm, and 22 μm. The mission was primarily designed to extract point sources, leaving resolved and extended sources, for the most part, unexplored. Accordingly, we have begun a dedicated WISE Enhanced Resolution Galaxy Atlas (WERGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we demonstrate the first results of the WERGA project for a sample of 17 galaxies, chosen to be of large angular size, diverse morphology, and covering a range in color, stellar mass, and star formation. It includes many well-studied galaxies, such as M 51, M 81, M 87, M 83, M 101, and IC 342. Photometry and surface brightness decomposition is carried out after special super-resolution processing, achieving spatial resolutions similar to that of Spitzer Infrared Array Camera. The enhanced resolution method is summarized in the first paper of this two-part series. In this second work, we present WISE, Spitzer, and Galaxy Evolution Explorer (GALEX) photometric and characterization measurements for the sample galaxies, combining the measurements to study the global properties. We derive star formation rates using the polycyclic aromatic hydrocarbon sensitive 12 μm (W3) fluxes, warm-dust sensitive 22 μm (W4) fluxes, and young massive-star sensitive ultraviolet (UV) fluxes. Stellar masses are estimated using the 3.4 μm (W1) and 4.6 μm (W2) measurements that trace the dominant stellar mass content. We highlight and showcase the detailed results of M 83, comparing the WISE/Spitzer results with the Australia Telescope Compact Array H I gas distribution and GALEX UV emission, tracing the evolution from gas to stars. In addition to the enhanced images, WISE's all-sky coverage provides a tremendous advantage over Spitzer for building a complete nearby galaxy catalog, tracing both stellar mass and star formation histories. We discuss the construction of a complete mid-infrared catalog of galaxies and its complementary role of studying the assembly and evolution of galaxies in the local universe.

310 citations



Journal ArticleDOI
TL;DR: In this paper, the authors show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies, and strong active galactic nuclei (AGNs)/QSOs at z ≾ 3.4 and 4.2.
Abstract: The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey in four channels at 3.4-22 μm, detecting hundreds of millions of objects. We merge the WISE mid-infrared data with optical data from the Sloan Digital Sky Survey (SDSS) and provide a phenomenological characterization of WISE extragalactic sources. WISE is most sensitive at 3.4 μm (W1) and least sensitive at 22 μm (W4). The W1 band probes massive early-type galaxies out to z ≳ 1. This is more distant than SDSS identified early-type galaxies, consistent with the fact that 28% of 3.4 μm sources have faint or no r-band counterparts (r > 22.2). In contrast, 92%-95% of 12 μm and 22 μm sources have SDSS optical counterparts with r ≤ 22.2. WISE 3.4 μm detects 89.8% of the entire SDSS QSO catalog at S/N_(W1) >7σ, but only 18.9% at 22 μm with S/N_(W4) > 5σ. We show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies, and strong active galactic nuclei (AGNs)/QSOs at z ≾ 3. We highlight three major applications of WISE colors: (1) Selection of strong AGNs/QSOs at z ≤ 3 using W1 – W2 > 0.8 and W2 0.8, W2 6 (Vega) colors can be used to identify type-2 AGN candidates. The fraction of these type-2 AGN candidates is one-third of all WISE color-selected AGNs. (3) Selection of ultraluminous infrared galaxies (ULIRGs) at z ~ 2 with extremely red colors, r – W4 > 14 or well-detected 22 μm sources lacking detections in the 3.4 and 4.6 μm bands. The surface density of z ~ 2 ULIRG candidates selected with r – W4 > 14 is 0.9 ± 0.07 deg^(–2) at S/N_(W4) ≥ 5 (the corresponding, lowest flux density of 2.5 mJy), which is consistent with that inferred from smaller area Spitzer surveys. Optical spectroscopy of a small number of these high-redshift ULIRG candidates confirms our selection, and reveals a possible trend that optically fainter or r – W4 redder candidates are at higher redshifts.

199 citations


Journal ArticleDOI
TL;DR: In this article, the authors report the discovery of 87 new T dwarfs uncovered with the Wide-Field Infrared Survey Explorer (WISE) and 3 brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarf candidates.
Abstract: We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and 3 brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7 ± 1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and 4 photometrically selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two young stellar objects and two active galactic nuclei. The substantial increase in the number of known late-type T dwarfs provides a population that will be used to test models of cold atmospheres and star formation. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.

162 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Wide-Field Infrared Survey Explorer (WISE) observations to estimate sizes and mean optical albedos of 52 Centaurs and scattered disk objects (SDOs) in the thermal infrared, including 15 new discoveries.
Abstract: The Wide-field Infrared Survey Explorer (WISE) observed 52 Centaurs and scattered disk objects (SDOs) in the thermal infrared, including 15 new discoveries. We present analyses of these observations to estimate sizes and mean optical albedos. We find mean albedos of 0.08 ± 0.04 for the entire data set. Thermal fits yield average beaming parameters of 0.9 ± 0.2 that are similar for both SDO and Centaur sub-classes. Biased cumulative size distributions yield size-frequency distribution power law indices of ~–1.7 ± 0.3. The data also reveal a relation between albedo and color at the 3σ level. No significant relation between diameter and albedos is found.

124 citations


Journal ArticleDOI
TL;DR: In this article, a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 dusty Lyα emitters (LAEs) was proposed.
Abstract: By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 ≾ z ≾ 4.6 dusty Lyα emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Lyα "blobs" (LABs). The objects have a surface density of only ~0.1 deg^(–2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L IR ≳ 10^(13)-10^(14) L_☉) and have warm colors. They are typically more luminous and warmer than other dusty, z ~ 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Lyα, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.

105 citations


Journal ArticleDOI
Abstract: We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two Young Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.

99 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Wide-Field Infrared Survey Explorer (WISE) observations to estimate sizes and mean optical albedos of Centaurs and scattered disk objects in the thermal infrared.
Abstract: The Wide-field Infrared Survey Explorer (WISE) observed 52 Centaurs and Scattered Disk Objects in the thermal infrared, including the 15 discoveries that were new. We present analyses of these observations to estimate sizes and mean optical albedos. We find mean albedos of 0.08 +/- 0.04 for the entire data set. Thermal fits yield average beaming parameters of 0.9 +/- 0.2 that are similar for both SDO and Centaur sub-classes. Biased cumulative size distributions yield size-frequency distribution power law indices ~ -1.7 +/- 0.3. The data also reveal a relation between albedo and color at the 3-sigma level. No significant relation between diameter and albedos is found.

85 citations


Journal ArticleDOI
TL;DR: In this paper, spectra, photometry, proper motions, and distance estimates for 42 low-mass star and brown dwarf candidates discovered by the Wide-field Infrared Survey Explorer (WISE).
Abstract: In our effort to complete the census of low-mass stars and brown dwarfs in the immediate solar neighborhood, we present spectra, photometry, proper motions, and distance estimates for 42 low-mass star and brown dwarf candidates discovered by the Wide-field Infrared Survey Explorer (WISE). We also present additional follow-up information on 12 candidates selected using WISE data but previously published elsewhere. The new discoveries include 15 M dwarfs, 17 L dwarfs, five T dwarfs, and five objects of other types. Among these discoveries is a newly identified “unusually red L dwarf” (WISE J223527.07 + 451140.9), four peculiar L dwarfs whose spectra are most readily explained as unresolved L + T binary systems, and a T9 dwarf (WISE J124309.61 + 844547.8). We also show that the recently discovered red L dwarf WISEP J004701.06 + 680352.1 may be a low-gravity object and hence young and potentially low-mass (< 25 M_(Jup)).

Journal ArticleDOI
TL;DR: In this article, the authors used a Bayesian procedure for distance estimation of 11 nearby ultracool brown dwarfs of spectral types Y and late-T, based on imaging observations from a variety of space-based and ground-based telescopes.
Abstract: We present astrometric measurements of 11 nearby ultracool brown dwarfs of spectral types Y and late-T, based on imaging observations from a variety of space-based and ground-based telescopes. These measurements have been used to estimate relative parallaxes and proper motions via maximum likelihood fitting of geometric model curves. To compensate for the modest statistical significance (≲7) of our parallax measurements we have employed a novel Bayesian procedure for distance estimation which makes use of an a priori distribution of tangential velocities, V_tan, assumed similar to that implied by previous observations of T_dwarfs. Our estimated distances are therefore somewhat dependent on that assumption. Nevertheless, the results have yielded distances for five of our eight Y dwarfs and all three T dwarfs. Estimated distances in all cases are ≳ 3 pc. In addition, we have obtained significant estimates of V_tan for two of the Y dwarfs; both are <100 km s^(–1), consistent with membership in the thin disk population. Comparison of absolute magnitudes with model predictions as a function of color shows that the Y dwarfs are significantly redder in J – H than predicted by a cloud-free model.

Journal ArticleDOI
TL;DR: In this article, a wide separation (188''5) T8 subdwarf companion to the sdM1.5+WD binary Wolf 1130.9 is verified through common proper motion over a ~3 yr baseline.
Abstract: We have discovered a wide separation (188.''5) T8 subdwarf companion to the sdM1.5+WD binary Wolf 1130. Companionship of WISE J200520.38+542433.9 is verified through common proper motion over a ~3 yr baseline. Wolf 1130 is located 15.83 ± 0.96 pc from the Sun, placing the brown dwarf at a projected separation of ~3000 AU. Near-infrared colors and medium resolution (R ≈ 2000-4000) spectroscopy establish the uniqueness of this system as a high-gravity, low-metallicity benchmark. Although there are a number of low-metallicity T dwarfs in the literature, WISE J200520.38+542433.9 has the most extreme inferred metallicity to date with [Fe/H] = –0.64 ± 0.17 based on Wolf 1130. Model comparisons to this exemplar late-type subdwarf support it having an old age, a low metallicity, and a small radius. However, the spectroscopic peculiarities of WISE J200520.38+542433.9 underscore the importance of developing the low-metallicity parameter space of the most current atmospheric models.

Journal ArticleDOI
TL;DR: In this article, the position of the Y-dwarf WISEPA J182831.08+265037.8 using a combination of ground-and space-based telescopes was determined.
Abstract: We have monitored the position of the cool Y dwarf WISEPA J182831.08+265037.8 using a combination of ground- and space-based telescopes and have determined its distance to be 11.2{sup +1.3} {sub -1.0} pc. Its absolute H magnitude, M{sub H} = 22.21{sup +0.25} {sub -0.22} mag, suggests a mass in the range 0.5-20 M {sub Jup} for ages of 0.1-10 Gyr with an effective temperature in the range 250-400 K. The broad range in mass is due primarily to the unknown age of the object. Since the high tangential velocity of the object, 51 {+-} 5 km s{sup -1}, is characteristic of an old disk population, a plausible age range of 2-4 Gyr leads to a mass range of 3-6 M {sub Jup} based on fits to the (highly uncertain) COND evolutionary models. The range in temperature is due to the fact that no single model adequately represents the 1-5 {mu}m spectral energy distribution (SED) of the source, failing by factors of up to five at either the short or long wavelength portions of the SED. The appearance of this very cold object may be affected by non-equilibrium chemistry or low temperature condensates forming clouds, two atmospheric processes that are known tomore » be important in brown dwarf atmospheres but have proven difficult to model. Finally, we argue that there would have to be a very steep upturn in the number density of late-type Y-dwarfs to account for the putative population of objects suggested by recent microlensing observations. Whether WISE 1828+2650 sits at the low-mass end of the brown dwarf population or is the first example of a large number of 'free-floating' planets is not yet known.« less

Journal ArticleDOI
TL;DR: The Wide-field Infrared Survey Explorer has revealed a T8.5 brown dwarf (WISE J111838.70+312537.9) that exhibits common proper motion with a solar-neighborhood (8 pc) quadruple star system as discussed by the authors.
Abstract: The Wide-field Infrared Survey Explorer has revealed a T8.5 brown dwarf (WISE J111838.70+312537.9) that exhibits common proper motion with a solar-neighborhood (8 pc) quadruple star system—ξ Ursae Majoris. The angular separation is 8.'5, and the projected physical separation is ≈4000 AU. The sub-solar metallicity and low chromospheric activity of ξ UMa A argue that the system has an age of at least 2 Gyr. The infrared luminosity and color of the brown dwarf suggests the mass of this companion ranges between 14 and 38 M_J for system ages of 2 and 8 Gyr, respectively.

Journal ArticleDOI
TL;DR: In this paper, the position of the Y-dwarf WISEPA J182831.08+265037.8 using a combination of ground and space-based telescopes was determined.
Abstract: We have monitored the position of the cool Y dwarf WISEPA J182831.08+265037.8 using a combination of ground- and space-based telescopes and have determined its distance to be 11.2$_{-1.0}^{+1.3}$ pc. Its absolute H magnitude, M$_H=22.21^{+0.25}_{-0.22}$ mag, suggests a mass in the range 0.5-20 M$_{Jup}$ for ages of 0.1-10 Gyr with an effective temperature in the range 250-400 K. The broad range in mass is due primarily to the unknown age of the object. Since the high tangential velocity of the object, 51$\pm5$ km s$^{-1}$, is characteristic of an old disk population, a plausible age range of 2-4 Gyr leads to a mass range of 3-6 M$_{Jup}$ based on fits to the (highly uncertain) COND evolutionary models. The range in temperature is due to the fact that no single model adequately represents the 1-5 $\mu$m spectral energy distribution (SED) of the source, failing by factors of up to 5 at either the short or long wavelength portions of the spectral energy distribution. The appearance of this very cold object may be affected by non-equilibrium chemistry or low temperature condensates forming clouds, two atmospheric processes that are known to be important in brown dwarf atmospheres but have proven difficult to model. Finally, we argue that there would have to be a very steep upturn in the number density of late type Y-dwarfs to account for the putative population of objects suggested by by recent microlensing observations. Whether WISE 1828+2650 sits at the low mass end of the brown dwarf population or is the first example of a large number of "free-floating" planets is not yet known.

Journal ArticleDOI
TL;DR: In this article, the Wide-Field Infrared Survey Explorer All-Sky Release with the 2MASS Point Source Catalog was used to detect a nearby, moderately metal-poor stellar debris stream spanning 24 degrees across the southern sky.
Abstract: Combining the Wide-Field Infrared Survey Explorer All-Sky Release with the 2MASS Point Source Catalog, we detect a nearby, moderately metal-poor stellar debris stream spanning 24 degrees across the southern sky. The stream, which we designate Alpheus, is at an estimated distance of ~1.9 kpc. Its position, orientation, width, estimated metallicity, and to some extent its distance, are in approximate agreement with what one might expect of the leading tidal tail of the southern globular cluster NGC 288.

Journal ArticleDOI
TL;DR: In this article, the Wide-Field Infrared Survey Explorer All-Sky Release with the Two Micron All Sky Survey Point Source Catalog was combined to detect a nearby, moderately metal-poor stellar debris stream spanning 24° across the southern sky.
Abstract: Combining the Wide-Field Infrared Survey Explorer All-Sky Release with the Two Micron All Sky Survey Point Source Catalog, we detect a nearby, moderately metal-poor stellar debris stream spanning 24° across the southern sky. The stream, which we designate Alpheus, is at an estimated distance of ~1.9 kpc. Its position, orientation, width, estimated metallicity, and, to some extent, its distance, are in approximate agreement with what one might expect of the leading tidal tail of the southern globular cluster NGC 288.

Journal ArticleDOI
TL;DR: WISE All-Sky mid-infrared (IR) survey detections of 55% (17/31) of the known QSOs at z > 6 from a range of surveys: the SDSS, the CFHT-LS, FIRST, Spitzer, and UKIDSS.
Abstract: We present WISE All-Sky mid-infrared (IR) survey detections of 55% (17/31) of the known QSOs at z > 6 from a range of surveys: the SDSS, the CFHT-LS, FIRST, Spitzer, and UKIDSS. The WISE catalog thus provides a substantial increase in the quantity of IR data available for these sources: 17 are detected in the WISE W1 (3.4 μm) band, 16 in W2 (4.6 μm), 3 in W3 (12 μm), and 0 in W4 (22 μm). This is particularly important with Spitzer in its warm-mission phase and no faint follow-up capability at wavelengths longward of 5 μm until the launch of James Webb Space Telescope (JWST). WISE thus provides a useful tool for understanding QSOs found in forthcoming large-area optical/IR sky surveys using PanSTARRS, SkyMapper, VISTA, DES, and LSST. The rest-UV properties of the WISE-detected and the WISE-non-detected samples differ: the detections have brighter i/z-band magnitudes and redder rest-UV colors. This suggests that a more aggressive hunt for very high redshift QSOs by combining WISE W1 and W2 data with red, observed optical colors could be effective at least for a subset of dusty candidate QSOs. Stacking the WISE images of the WISE-non-detected QSOs indicates that they are, on average, significantly fainter than the WISE-detected examples, and are thus not narrowly missing detection in the WISE catalog. The WISE catalog detection of three of our sample in the W3 band indicates that their mid-IR flux can be detected individually, although there is no stacked W3 detection of sources detected in W1 but not W3. Stacking analyses of WISE data for large active galactic nucleus samples will be a useful tool, and high-redshift QSOs of all types will be easy targets for JWST.

Proceedings ArticleDOI
21 May 2013
TL;DR: In this article, the authors present the hot test results of a 220 GHz, serpentine waveguide vacuum electron amplifier showcasing a novel embedded monofilament microfabrication technique based on UV-LIGA.
Abstract: We present the hot test results of a 220 GHz, serpentine waveguide vacuum electron amplifier showcasing a novel embedded monofilament microfabrication technique based on UV-LIGA. The instantaneous operating bandwidth exceeds 15 GHz and the small signal gain of the circuit is over 14 dB. By varying the voltage slightly, an operating bandwidth of almost 40 GHz is realizable with a minimum circuit gain of 7 dB across the band. A maximum power of just over 60 W was obtained at the output flange of the device, corresponding to a power of almost 80 W generated in the circuit.

Proceedings ArticleDOI
16 Jun 2013
TL;DR: This presentation will discuss electromagnetic properties and beam-wave interaction of the serpentine/FW circuit topology, in general, and design methodology to optimize power, gain, and bandwidth for a “zero-drive” stable amplifier, in particular.
Abstract: Serpentine or, its cousin, the folded waveguide (FW) traveling-wave tubes (TWTs) are a class of vacuum electronic devices capable of wideband, high-power performance. This was first demonstrated in [1] with several Q-band 2-stage TWTs that produced 135 W of average power and saturated gains of ~30 dB over an impressive 25% instantaneous bandwidth. More recently, a 60 W broadband 220-GHz (G-band) serpentine TWT was designed and demonstrated at NRL [2]. The excellent agreement between prediction and data G-band TWT serves as an experimental validation for our design tools (MAGIC and Neptune particle-in-cell codes, large signal code Tesla, gun/collector code MICHELLE, 3-D electromagnetic code Analyst, etc.) and methodology; a critical step in the design of future amplifiers. This presentation will discuss electromagnetic properties and beam-wave interaction of the serpentine/FW circuit topology, in general, and design methodology to optimize power, gain, and bandwidth for a “zero-drive” stable amplifier, in particular. A novel hybrid-serpentine circuit topology, which combines key advantages of serpentine and FW topologies, will also be presented and discussed.

Journal ArticleDOI
TL;DR: In this paper, the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infrared (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE).
Abstract: In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infrared (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by ~1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 ± 0.3 Gyr, and 6.2 ± 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed ~1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the ~0.5–2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z ~ 1.

Journal ArticleDOI
TL;DR: In this paper, the authors present electromagnetic cold-test measurements of BeO ceramic pillbox vacuum windows for a 220 GHz traveling-wave tube amplifier with a 25 GHz frequency band center in the range of 212-225 GHz.
Abstract: We present electromagnetic cold-test measurements of BeO ceramic pillbox vacuum windows for a 220-GHz traveling-wave tube amplifier. Transmission and reflection measurements show better than 20 dB return loss over a 25 GHz bandwidth, with band centers in the range of 212-225 GHz. We observe tuning of the window response as the circular waveguide length is changed. High-power testing is performed at 2.5 W, 100% duty at 218 GHz.

Journal ArticleDOI
TL;DR: In this paper, the radial distribution of ultraviolet excess (UVX) in a selection of 49 nearby E/S0-type galaxies by measuring the extended photometry in the UV-midIR with GALEX, SDSS and WISE was explored.
Abstract: In the local Universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission (UVX) over what is expected from their old, red stellar populations. Several origins for the UVX have been proposed, including a population of hot young stars, or a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of ultraviolet excess (UVX) in a selection of 49 nearby E/S0-type galaxies by measuring the extended photometry in the UV-midIR with GALEX, SDSS and WISE. We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis with EHB models (Conroy & Gunn 2010). We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to EHB fraction. There are strong color gradients with the outer radii bluer than the inner half-light radii by ~1 magnitude. This color difference is easily accounted for with a BHB fraction increase of 0.25 with radius. We estimated the average ages for the inner and outer radii are 7.0+/-0.3 Gyr, and 6.2+/-0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed ~1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the ~0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z~1

Proceedings ArticleDOI
TL;DR: In this paper, the authors present the microfabrication and cold test measurement results of serpentine waveguide amplifier circuits at 220 GHz and show remarkable characteristic matches between the measurements of the best circuits, illustrating that the process developed is able to create repeatable, highly customized and precise circuits with high yield.
Abstract: We present the microfabrication and cold test measurement results of serpentine waveguide amplifier circuits at 220 GHz. The circuits were fabricated using a novel embedded polymer monofilament technique combined with Ultraviolet- LIGA to simultaneously create both the beam tunnel and interaction circuits. We find remarkable characteristic matches between the measurements of the best circuits, illustrating that the process developed is able to create repeatable, highly precise circuits with high yield. It was found that slight beam tunnel misalignment can cause very strong stopbands to appear in the operating band due to bi- or quasi-periodicity. The NRL code TESLA-SW/FW has been used to rapidly simulate the as-built structure under a variety of conditions to accurately predict the performance with an electron beam. The tolerances needed on beam tunnel alignment are studied, with implications extending to the THz range.

Proceedings ArticleDOI
21 May 2013
TL;DR: In this paper, a high power broadband three-beam Ka-band cascaded traveling-wave tube (TWT) prototype is presented, driven by an electron gun (0.6 A × 3, 20 kV) adapted from an 18-beam multiple-beam klystron gun design.
Abstract: Progress on the demonstration of a high power broadband three-beam Ka-band cascaded traveling-wave tube (TWT) prototype is presented. The amplifier will be driven by an electron gun (0.6 A × 3, 20 kV) adapted from our 18-beam multiple-beam klystron gun design. Both serpentine and folded-waveguide versions of the cascaded-TWT have been evaluated. The expected peak RF output power is 4.5 kW with 100 W of drive power at a frequency of 30 GHz. The minimum output power is 3 kW over a 5 GHz frequency band (4 kW over > 2 GHz).

Proceedings ArticleDOI
21 May 2013
TL;DR: In this article, the design of a W-band serpentine TWT with >200 W of power over a 4 GHz bandwidth (>100 W over 7 GHz) is presented, driven by a 122mA, 20 kV electron beam generated by a modified version of the demonstrated 670 GHz beamstick at a reduced magnetic field.
Abstract: The design of a W-band serpentine TWT with >200 W of power over a 4 GHz bandwidth (>100 W over 7 GHz) is presented. The amplifier is driven by a 122mA, 20 kV electron beam generated by a slightly modified version of the demonstrated 670 GHz beamstick at a reduced magnetic field. The design was performed by both the established MAGIC-3D and the recently validated NRL code Neptune, with good agreement between the two codes. Predicted RF peak power is 245 W, corresponding to 10% electronic efficiency.

Journal ArticleDOI
TL;DR: In this paper, the authors presented previously unreported detections of 106 close approaching near-Earth objects (NEOs) by the Wide-field Infrared Survey Explorer mission's NEOWISE project.
Abstract: Only a very small fraction of the asteroid population at size scales comparable to the object that exploded over Chelyabinsk, Russia has been discovered to date, and physical properties are poorly characterized. We present previously unreported detections of 106 close approaching near-Earth objects (NEOs) by the Wide-field Infrared Survey Explorer mission's NEOWISE project. These infrared observations constrain physical properties such as diameter and albedo for these objects, many of which are found to be smaller than 100 m. Because these objects are intrinsically faint, they were detected by WISE during very close approaches to the Earth, often at large apparent on-sky velocities. We observe a trend of increasing albedo with decreasing size, but as this sample of NEOs was discovered by visible light surveys, it is likely that selection biases against finding small, dark NEOs influence this finding.

Journal ArticleDOI
TL;DR: In this article, the authors presented spectra, photometry, proper motions, and distance estimates for forty-two low-mass star and brown dwarf candidates discovered by the Wide-field Infrared Survey Explorer (WISE).
Abstract: In our effort to complete the census of low-mass stars and brown dwarfs in the immediate Solar Neighborhood, we present spectra, photometry, proper motions, and distance estimates for forty-two low-mass star and brown dwarf candidates discovered by the Wide-field Infrared Survey Explorer (WISE). We also present additional follow-up information on twelve candidates selected using WISE data but previously published elsewhere. The new discoveries include fifteen M dwarfs, seventeen L dwarfs, five T dwarfs, and five objects of other type. Among these discoveries is a newly identified "unusually red L dwarf" (WISE J223527.07+451140.9), four peculiar L dwarfs whose spectra are most readily explained as unresolved L+T binary systems, and a T9 dwarf (WISE J124309.61+844547.8). We also show that the recently discovered red L dwarf WISEP J004701.06+680352.1 (Gizis et al. 2012) may be a low-gravity object and hence young and potentially low mass (< 25 MJup).