scispace - formally typeset
Search or ask a question
Author

Edward L. Wright

Bio: Edward L. Wright is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Cosmic microwave background & Galaxy. The author has an hindex of 119, co-authored 649 publications receiving 128250 citations. Previous affiliations of Edward L. Wright include Princeton University & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented new full-sky temperature and polarization maps based on seven years of data from WMAP, which are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures.
Abstract: New full-sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven-year data set is well fit by a minimal six-parameter flat ?CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H 0 from Hubble Space Telescope observations, are ? b h 2 = 0.02260 ? 0.00053, ? c h 2 = 0.1123 ? 0.0035, ?? = 0.728+0.015 ?0.016, ns = 0.963 ? 0.012, ? = 0.087 ? 0.014, and ?8 = 0.809 ? 0.024 (68% CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles ? 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, ? m h 2 = 0.1334+0.0056 ?0.0055, and the epoch of matter-radiation equality, z eq = 3196+134 ?133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, result in a 3? detection of the abundance of primordial helium, Y He = 0.326 ? 0.075. When combined with additional external data sets, the WMAP data also yield better determinations of the total mass of neutrinos, ?m ? ? 0.58 eV(95%CL), and the effective number of neutrino species, N eff = 4.34+0.86 ?0.88. The power-law index of the primordial power spectrum is now determined to be ns = 0.963 ? 0.012, excluding the Harrison-Zel'dovich-Peebles spectrum by >3?. These new WMAP measurements provide important tests of big bang cosmology.

1,396 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a framework for the integration of the INSU-IN2P3-INP project with the National Science and Technology Facilities Council (NSF) and the Higher Education Funding Council for England (HEFL).
Abstract: ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Higher Education Funding Council for England; Science and Technology Facilities Council; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science

1,178 citations

Journal ArticleDOI
TL;DR: A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters has been made available online as mentioned in this paper, which allows one to specify the equation-of-state parameter w and, and one for converting the light-travel times usually given in the popular press into redshifts.
Abstract: A cosmology calculator that computes times and distances as a function of redshift for user- defined cosmological parameters has been made available online. This paper gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation-of-state parameter w and , and one for converting the light-travel times usually given in � w the popular press into redshifts, is also located at the same site.

1,137 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data.
Abstract: We confront predictions of inflationary scenarios with the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data. The WMAP detection of a large-angle anticorrelation in the temperature-polarization cross-power spectrum is the signature of adiabatic superhorizon fluctuations at the time of decoupling. The WMAP data are described by pure adiabatic fluctuations: we place an upper limit on a correlated cold dark matter (CDM) isocurvature component. Using WMAP constraints on the shape of the scalar power spectrum and the amplitude of gravity waves, we explore the parameter space of inflationary models that is consistent with the data. We place limits on inflationary models; for example, a minimally coupled λ4 is disfavored at more than 3 σ using WMAP data in combination with smaller scale CMB and large-scale structure survey data. The limits on the primordial parameters using WMAP data alone are ns(k0 = 0.002 Mpc-1) = 1.20, dns/d ln k = -0.077, A(k0 = 0.002 Mpc-1) = 0.71 (68% CL), and r(k0 = 0.002 Mpc-1) < 1.28 (95% CL).

1,093 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented new full-sky temperature maps in five frequency bands from 23 to 94 GHz, based on data from the first 3 years of the WMAP sky survey.
Abstract: We present new full-sky temperature maps in five frequency bands from 23 to 94 GHz, based on data from the first 3 years of the WMAP sky survey. The new maps are consistent with the first-year maps and are more sensitive. The 3 year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the polarization signal. These include several new consistency tests as well as refinements in the gain calibration and beam response models. We employ two forms of multifrequency analysis to separate astrophysical foreground signals from the CMB, each of which improves on our first-year analyses. First, we form an improved "Internal Linear Combination" (ILC) map, based solely on WMAP data, by adding a bias-correction step and by quantifying residual uncertainties in the resulting map. Second, we fit and subtract new spatial templates that trace Galactic emission; in particular, we now use low-frequency WMAP data to trace synchrotron emission instead of the 408 MHz sky survey. The WMAP point source catalog is updated to include 115 new sources whose detection is made possible by the improved sky map sensitivity. We derive the angular power spectrum of the temperature anisotropy using a hybrid approach that combines a maximum likelihood estimate at low l (large angular scales) with a quadratic cross-power estimate for l > 30. The resulting multifrequency spectra are analyzed for residual point source contamination. At 94 GHz the unmasked sources contribute 128 ± 27 μK2 to l(l + 1)Cl/2π at l = 1000. After subtracting this contribution, our best estimate of the CMB power spectrum is derived by averaging cross-power spectra from 153 statistically independent channel pairs. The combined spectrum is cosmic variance limited to l = 400, and the signal-to-noise ratio per l-mode exceeds unity up to l = 850. For bins of width Δl/l = 3%, the signal-to-noise ratio exceeds unity up to l = 1000. The first two acoustic peaks are seen at l = 220.8 ± 0.7 and l = 530.9 ± 3.8, respectively, while the first two troughs are seen at l = 412.4 ± 1.9 and l = 675.2 ± 11.1. The rise to the third peak is unambiguous; when the WMAP data are combined with higher resolution CMB measurements, the existence of a third acoustic peak is well established. Spergel et al. use the 3 year temperature and polarization data to constrain cosmological model parameters. A simple six-parameter ΛCDM model continues to fit CMB data and other measures of large-scale structure remarkably well. The new polarization data produce a better measurement of the optical depth to reionization, τ = 0.089 ± 0.03. This new and tighter constraint on τ helps break a degeneracy with the scalar spectral index, which is now found to be ns = 0.960 ± 0.016. If additional cosmological data sets are included in the analysis, the spectral index is found to be ns = 0.947 ± 0.015.

1,030 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations