scispace - formally typeset
Search or ask a question
Author

Edward M. Greitzer

Bio: Edward M. Greitzer is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Axial compressor & Gas compressor. The author has an hindex of 50, co-authored 152 publications receiving 9385 citations. Previous affiliations of Edward M. Greitzer include Harvard University & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an approximate theory for post-stall transients in multistage axial compression systems is presented, which leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor.
Abstract: An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.

812 citations

Journal ArticleDOI
TL;DR: In this paper, a computational study to define the phenomena that lead to the onset of short length-scale (spike) rotating stall disturbances has been carried out based on unsteady simulations.
Abstract: A computational study to define the phenomena that lead to the onset of short length-scale (spike) rotating stall disturbances has been carried out. Based on unsteady simulations, we hypothesize there are two conditions necessary for the formation of spike disturbances, both of which are linked to the tip clearance flow. One is that the interface between the tip clearance and oncoming flows becomes parallel to the leading-edge plane. The second is the initiation of backflow, stemming from the fluid in adjacent passages, at the trailing-edge plane. The two criteria also imply a circumferential length scale for spike disturbances. The hypothesis and scenario developed are consistent with numerical simulations and experimental observations of axial compressor stall inception. A comparison of calculations for multiple blades with those for single passages also allows statements to be made about the utility of single passage computations as a descriptor of compressor stall.

393 citations

Journal ArticleDOI
TL;DR: In this paper, a limited parametric study is carried out to illustrate the impact of different system features on transient behavior, and it is shown that the ultimate mode of system response, surge or stable rotating stall, depends not only on the B parameter, but also on the compressor length-to-radius ratio.
Abstract: Using the theory developed in Part I, calculations have been carried out to show the evolution of the mass flow, pressure rise, and rotating-stall cell amplitude during compression system post-stall transients. In particular, it is shown that the unsteady growth or decay of the stall cell can have a significant effect on the instantaneous compressor pumping characteristic and hence on the overall system behavior. A limited parametric study is carried out to illustrate the impact of different system features on transient behavior. It is shown, for example, that the ultimate mode of system response, surge or stable rotating stall, depends not only on the B parameter, but also on the compressor length-to-radius ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. Based on the analytical and numerical results, several specific topics are suggested for future research on post-stall transients.

344 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review provides a framework for the discussion of actuator specifications, characteristics, selection, design, and classification for aeronautical applications and attempts to highlight the strengths and inevitable drawbacks of each and highlight potential future research directions.
Abstract: Actuators are transducers that convert an electrical signal to a desired physical quantity. Active flow control actuators modify a flow by providing an electronically controllable disturbance. The field of active flow control has witnessed explosive growth in the variety of actuators, which is a testament to both the importance and challenges associated with actuator design. This review provides a framework for the discussion of actuator specifications, characteristics, selection, design, and classification for aeronautical applications. Actuator fundamentals are discussed, and various popular actuator types used in low-to-moderate speed flows are then described, including fluidic, moving object/surface, and plasma actuators. We attempt to highlight the strengths and inevitable drawbacks of each and highlight potential future research directions.

915 citations

Journal ArticleDOI
TL;DR: This survey describes the 'activation' of stability, optimality and uncertainty concepts into design tools and constructive procedures in nonlinear control theory and concludes with four representative applications.

720 citations

MonographDOI
01 Feb 2011
TL;DR: In this article, the authors focus on the design issues associated with the flow of liquid through a rotating machine and the potential for cavitation and the high density of liquids that enhances the possibility of damaging unsteady flows and forces.
Abstract: The subject of this monograph is the fluid dynamics of liquid turbomachines, particularly pumps. Rather than attempt a general treatise on turbomachines, we shall focus attention on those special problems and design issues associated with the flow of liquid through a rotating machine. There are two characteristics of a liquid that lead to these special problems, and cause a significantly different set of concerns than would occur in, say, a gas turbine. These are the potential for cavitation and the high density of liquids that enhances the possibility of damaging unsteady flows and forces.

527 citations

Journal ArticleDOI
TL;DR: The analysis and experiments suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100
Abstract: The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier–Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the `quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100

499 citations

Journal ArticleDOI
TL;DR: A learning-based model predictive control scheme that provides deterministic guarantees on robustness, while statistical identification tools are used to identify richer models of the system in order to improve performance.

483 citations