scispace - formally typeset
Search or ask a question
Author

Edward M. Hubbard

Bio: Edward M. Hubbard is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Synesthesia & Grapheme-color synesthesia. The author has an hindex of 27, co-authored 73 publications receiving 7218 citations. Previous affiliations of Edward M. Hubbard include Beth Israel Deaconess Medical Center & Salk Institute for Biological Studies.


Papers
More filters
Journal Article
TL;DR: Different subtypes of number–colour synaesthesia are identified and it is proposed that they are caused by hyperconnectivity between colour and number areas at different stages in processing; lower synaesthetes may have cross-wiring (or cross-activation) within the fusiform gyrus, whereas higher synaeste may haveCross-activation in the angular gyrus.
Abstract: We investigated grapheme–colour synaesthesia and found that: (1) The induced colours led to perceptual grouping and pop-out, (2) a grapheme rendered invisible through ‘crowding’ or lateral masking induced synaesthetic colours — a form of blindsight — and (3) peripherally presented graphemes did not induce colours even when they were clearly visible. Taken collectively, these and other experiments prove conclusively that synaesthesia is a genuine perceptual phenomenon, not an effect based on memory associations from childhood or on vague metaphorical speech. We identify different subtypes of number–colour synaesthesia and propose that they are caused by hyperconnectivity between colour and number areas at different stages in processing; lower synaesthetes may have cross-wiring (or cross-activation) within the fusiform gyrus, whereas higher synaesthetes may have cross-activation in the angular gyrus. This hyperconnectivity might be caused by a genetic mutation that causes defective pruning of connections between brain maps. The mutation may further be expressed selectively (due to transcription factors) in the fusiform or angular gyri, and this may explain the existence of different forms of synaesthesia. If expressed very diffusely, there may be extensive cross-wiring between brain regions that represent abstract concepts, which would explain the link between creativity, metaphor and synaesthesia (and the higher incidence of synaesthesia among artists and poets). Also, hyperconnectivity between the sensory cortex and amygdala would explain the heightened aversion synaesthetes experience when seeing numbers printed in the ‘wrong’ colour. Lastly, kindling (induced hyperconnectivity in the temporal lobes of temporal lobe epilepsy [TLE] patients) may explain the purported higher incidence of synaesthesia in these patients . We conclude with a synaesthesia-based theory of the evolution of language. Thus, our experiments on synaesthesia and our theoretical framework attempt to link several seemingly unrelated facts about the human mind. Far from being a mere curiosity, synaesthesia may provide a window into perception, thought and language. www.imprint-academic.com/rama copyright © Journal of Consciousness Studies, 8, No. 12, 2001, pp. 3–34 Correspondence: Center for Brain and Cognition, University of California, San Diego, 9500 Gilman Dr. 0109, La Jolla, CA 92093-0109, e-mail: vramacha@ucsd.edu

1,299 citations

Journal ArticleDOI
TL;DR: It is proposed that these numerical–spatial interactions arise from common parietal circuits for attention to external space and internal representations of numbers.
Abstract: Since the time of Pythagoras, numerical and spatial representations have been inextricably linked. We suggest that the relationship between the two is deeply rooted in the brain's organization for these capacities. Many behavioural and patient studies have shown that numerical-spatial interactions run far deeper than simply cultural constructions, and, instead, influence behaviour at several levels. By combining two previously independent lines of research, neuroimaging studies of numerical cognition in humans, and physiological studies of spatial cognition in monkeys, we propose that these numerical-spatial interactions arise from common parietal circuits for attention to external space and internal representations of numbers.

1,109 citations

Journal ArticleDOI
TL;DR: The hypothesis of a dysfunctional mirror neuron system in high-functioning individuals with ASD is supported, given their behavioral impairments in understanding and responding appropriately to others' behaviors.

1,080 citations

Journal ArticleDOI
01 Apr 2000-Infancy
TL;DR: It is concluded that, in infancy, the onset of locomotor experience brings about widespread consequences, and after infancy, can be responsible for an enduring role in development by maintaining and updating existing skills.
Abstract: The onset of locomotion heralds one of the major life transitions in early development and involves a pervasive set of changes in perception, spatial cognition, and social and emotional development. Through a synthesis of published and hitherto unpublished findings, gathered from a number of converging research designs and methods, this article provides a comprehensive review and reanalysis of the consequences of self-produced locomotor experience. Specifically, we focus on the role of locomotor experience in changes in social and emotional development, referential gestural communication, wariness of heights, the perception of self-motion, distance perception, spatial search, and spatial coding strategies. Our analysis reveals new insights into the specific processes by which locomotor experience brings about psychological changes. We elaborate these processes and provide new predictions about previously unsuspected links between locomotor experience and psychological function. The research we describe is relevant to our broad understanding of the developmental process, particularly as it pertains to developmental transitions. Although acknowledging the role of genetically mediated developmental changes, our viewpoint is a transactional one in which a single acquisition, in this case the onset of locomotion, sets in motion a family of experiences and processes that in turn mobilize both broad-based and context-specific psychological reorganizations. We conclude that, in infancy, the onset of locomotor experience brings about widespread consequences, and after infancy, can be responsible for an enduring role in development by maintaining and updating existing skills.

796 citations

Journal ArticleDOI
TL;DR: It is proposed that grapheme colour synaesthesia arises from 'cross–wiring' between the 'colour centre' (area V4 or V8) and the 'number area', both of which lie in the fusiform gyrus.
Abstract: We studied two otherwise normal, synaesthetic subjects who 'saw' a specific colour every time they saw a specific number or letter. We conducted four experiments in order to show that this was a genuine perceptual experience rather than merely a memory association. (i) The synaesthetically induced colours could lead to perceptual grouping, even though the inducing numerals or letters did not. (ii) Synaesthetically induced colours were not experienced if the graphemes were presented peripherally. (iii) Roman numerals were ineffective: the actual number grapheme was required. (iv) If two graphemes were alternated the induced colours were also seen in alternation. However, colours were no longer experienced if the graphemes were alternated at more than 4 Hz. We propose that grapheme colour synaesthesia arises from 'cross-wiring' between the 'colour centre' (area V4 or V8) and the 'number area', both of which lie in the fusiform gyrus. We also suggest a similar explanation for the representation of metaphors in the brain: hence, the higher incidence of synaesthesia among artists and poets.

385 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The meaning of the terms "method" and "method bias" are explored and whether method biases influence all measures equally are examined, and the evidence of the effects that method biases have on individual measures and on the covariation between different constructs is reviewed.
Abstract: Despite the concern that has been expressed about potential method biases, and the pervasiveness of research settings with the potential to produce them, there is disagreement about whether they really are a problem for researchers in the behavioral sciences. Therefore, the purpose of this review is to explore the current state of knowledge about method biases. First, we explore the meaning of the terms “method” and “method bias” and then we examine whether method biases influence all measures equally. Next, we review the evidence of the effects that method biases have on individual measures and on the covariation between different constructs. Following this, we evaluate the procedural and statistical remedies that have been used to control method biases and provide recommendations for minimizing method bias.

8,719 citations

Journal ArticleDOI
TL;DR: A neurophysiological mechanism appears to play a fundamental role in both action understanding and imitation, and those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation are stressed.
Abstract: A category of stimuli of great importance for primates, humans in particular, is that formed by actions done by other individuals. If we want to survive, we must understand the actions of others. Furthermore, without action understanding, social organization is impossible. In the case of humans, there is another faculty that depends on the observation of others' actions: imitation learning. Unlike most species, we are able to learn by imitation, and this faculty is at the basis of human culture. In this review we present data on a neurophysiological mechanism--the mirror-neuron mechanism--that appears to play a fundamental role in both action understanding and imitation. We describe first the functional properties of mirror neurons in monkeys. We review next the characteristics of the mirror-neuron system in humans. We stress, in particular, those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation. We conclude by discussing the relationship between the mirror-neuron system and language.

6,747 citations

Journal ArticleDOI

3,628 citations

Journal ArticleDOI
TL;DR: The mirror-neuron mechanism appears to play a fundamental role in both action understanding and imitation as mentioned in this paper, which is at the basis of human culture and ability to learn by imitation.
Abstract: � Abstract A category of stimuli of great importance for primates, humans in particular, is that formed by actions done by other individuals. If we want to survive, we must understand the actions of others. Furthermore, without action understanding, social organization is impossible. In the case of humans, there is another faculty that depends on the observation of others’ actions: imitation learning. Unlike most species, we are able to learn by imitation, and this faculty is at the basis of human culture. In this review we present data on a neurophysiological mechanism—the mirror-neuron mechanism—that appears to play a fundamental role in both action understanding and imitation. We describe first the functional properties of mirror neurons in monkeys. We review next the characteristics of the mirror-neuron system in humans. We stress, in particular, those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation. We conclude by discussing the relationship between the mirror-neuron system and language.

3,161 citations