scispace - formally typeset
Search or ask a question
Author

Edwin E. Escobar

Bio: Edwin E. Escobar is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: RNA polymerase II & Mass spectrometry. The author has an hindex of 4, co-authored 11 publications receiving 54 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work leverages CAD-induced oxocarbenium ion generation to trigger ultraviolet photodissociation (UVPD), an alternate high energy deposition method that offers extensive fragmentation of peptides while leaving the glycosite intact and is broadly useful for mapping O-GlcNAcylated residues of both proteins and proteomes.
Abstract: Despite its central importance as a regulator of cellular physiology, identification and precise mapping of O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (PTM) sites in proteins by mass spectrometry (MS) remains a considerable technical challenge. This is due in part to cleavage of the glycosidic bond occurring prior to the peptide backbone during collisionally activated dissociation (CAD), which leads to generation of characteristic oxocarbenium ions and impairs glycosite localization. Herein, we leverage CAD-induced oxocarbenium ion generation to trigger ultraviolet photodissociation (UVPD), an alternate high-energy deposition method that offers extensive fragmentation of peptides while leaving the glycosite intact. Upon activation using UV laser pulses, efficient photodissociation of glycopeptides is achieved with production of multiple sequence ions that enable robust and precise localization of O-GlcNAc sites. Application of this method to tryptic peptides originating from O-GlcNAcylated proteins TAB1 and Polyhomeotic confirmed previously reported O-GlcNAc sites in TAB1 (S395 and S396) and uncovered new sites within both proteins. We expect this strategy will complement existing MS/MS methods and be broadly useful for mapping O-GlcNAcylated residues of both proteins and proteomes.

26 citations

Journal ArticleDOI
06 Aug 2019-eLife
TL;DR: The ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential is demonstrated and provides direct experimental evidence for a combinatorial CTD phosphorylated code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.
Abstract: DNA contains the instructions for making proteins, which build and maintain our cells. So that the information encoded in DNA can be used, a molecular machine called RNA polymerase II makes copies of specific genes. These copies, in the form of a molecule called RNA, convey the instructions for making proteins to the rest of the cell. To ensure that RNA polymerase II copies the correct genes at the correct time, a group of regulatory proteins are needed to control its activity. Many of these proteins interact with RNA polymerase II at a region known as the C-terminal domain, or CTD for short. For example, before RNA polymerase can make a full copy of a gene, a small molecule called a phosphate group must first be added to CTD at specific units known as Ser2. The regulatory protein P-TEFb was thought to be responsible for phosphorylating Ser2. However, it was previously not known how P-TEFb added this phosphate group, and why it did not also add phosphate groups to other positions in the CTD domain that are structurally similar to Ser2. To investigate this, Mayfield, Irani et al. mixed the CTD domain with different regulatory proteins, and used various biochemical approaches to examine which specific positions of the domain had phosphate groups attached. These experiments revealed a previously unknown aspect of P-TEFb activity: its specificity for Ser2 increased dramatically if a different regulatory protein first added a phosphate group to a nearby location in CTD. This additional phosphate group directed P-TEFb to then add its phosphate specifically at Ser2. To confirm the activity of this mechanism in living human cells, Mayfield, Irani et al. used a drug that prevented the first phosphate from being added. In the drug treated cells, RNA polymerase II was found more frequently ‘stalled’ at positions on the DNA just before a gene starts. This suggests that living cells needs this two-phosphate code system in order for RNA polymerase II to progress and make copies of specific genes. These results are a step forward in understanding the complex control mechanisms cells use to make proteins from their DNA. Moreover, the model presented here – one phosphate addition priming a second specific phosphate addition – provides a template that may underlie similar regulatory processes.

21 citations

Journal ArticleDOI
TL;DR: UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.
Abstract: As the importance of effective vaccines and the role of protein therapeutics in the drug industry continue to expand, alternative strategies to characterize protein complexes are needed. Mass spectrometry (MS) in conjunction with enzymatic digestion or chemical probes has been widely used for mapping binding epitopes at the molecular level. However, advances in instrumentation and application of activation methods capable of accessing higher energy dissociation pathways have recently allowed direct analysis of protein complexes. Here we demonstrate a workflow utilizing native MS and ultraviolet photodissociation (UVPD) to map the antigenic determinants of a model antibody-antigen complex involving hemagglutinin (HA), the primary immunogenic antigen of the influenza virus, and the D1 H1-17/H3-14 antibody which has been shown to confer potent protection to lethal infection in mice despite lacking neutralization activity. Comparison of sequence coverages upon UV photoactivation of HA and of the HA·antibody complex indicates the elimination of some sequence ions that originate from backbone cleavages exclusively along the putative epitope regions of HA in the presence of the antibody. Mapping the number of sequence ions covering the HA antigen versus the HA·antibody complex highlights regions with suppressed backbone cleavage and allows elucidation of unknown epitopes. Moreover, examining the observed fragment ion types generated by UVPD demonstrates a loss in diversity exclusively along the antigenic determinants upon MS/MS of the antibody-antigen complex. UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.

14 citations

Journal ArticleDOI
TL;DR: A hybrid UVPD-CID approach known as activated-electron photodetachment (a-EPD) affords less congested spectra than UVPD alone and richer fragmentation patterns than CID alone and was employed to characterize the structure and branching pattern of deacylated LOS of E. coli.
Abstract: Lipooligosaccharides (LOS), composed of hydrophilic oligosaccharides and hydrophobic lipid A domains, are found on the outer membranes of Gram-negative bacteria. Here we report the characterization of deacylated LOS of LPS by activated-electron photodetachment mass spectrometry. Collision induced dissociation (CID) of these phosphorylated oligosaccharides produces simple MS/MS spectra with most fragment ions arising from cleavages near the reducing end of the molecule where the phosphate groups are located. In contrast, 193 nm ultraviolet photodissociation (UVPD) generates a wide array of product ions throughout the oligosaccharide including cross-ring fragments that illuminate the branching patterns. However, there are also product ions that are redundant or uninformative, resulting in more congested spectra that complicate interpretation. In this work, a hybrid UVPD-CID approach known as activated-electron photodetachment (a-EPD) affords less congested spectra than UVPD alone and richer fragmentation pa...

9 citations

Journal ArticleDOI
TL;DR: In this paper , a novel method for coupling drift tube ion mobility spectrometry (DTIMS) with a UVPD-enabled Orbitrap mass spectrometer using absorption mode Fourier transform multiplexing is presented.
Abstract: The structural diversity of phospholipids plays a critical role in cellular membrane dynamics, energy storage, and cellular signaling. Despite its importance, the extent of this diversity has only recently come into focus, largely owing to advances in separation science and mass spectrometry methodology and instrumentation. Characterization of glycerophospholipid (GP) isomers differing only in their acyl chain configurations and locations of carbon-carbon double bonds (C═C) remains challenging due to the need for both effective separation of isomers and advanced tandem mass spectrometry (MS/MS) technologies capable of double-bond localization. Drift tube ion mobility spectrometry (DTIMS) coupled with MS can provide both fast separation and accurate determination of collision cross section (CCS) of molecules but typically lacks the resolving power needed to separate phospholipid isomers. Ultraviolet photodissociation (UVPD) can provide unambiguous double-bond localization but is challenging to implement on the timescales of modern commercial drift tube time-of-flight mass spectrometers. Here, we present a novel method for coupling DTIMS with a UVPD-enabled Orbitrap mass spectrometer using absorption mode Fourier transform multiplexing that affords simultaneous localization of double bonds and accurate CCS measurements even when isomers cannot be fully resolved in the mobility dimension. This method is demonstrated on two- and three-component mixtures and shown to provide CCS measurements that differ from those obtained by individual analysis of each component by less than 1%.

8 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Abstract: The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.

136 citations

Journal ArticleDOI
TL;DR: A comprehensive review of protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification from analytical and biochemical perspectives is presented in this article.
Abstract: Protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is a unique monosaccharide modification discovered in the early 1980s. With the technological advances in the past several decades, great progress has been made to reveal the biochemistry of O-GlcNAcylation, the substrates of O-GlcNAcylation, and the functional importance of protein O-GlcNAcylation. As a nutrient sensor, protein O-GlcNAcylation plays important roles in almost all biochemical processes examined. Although the functional importance of O-GlcNAcylation of proteins has been extensively reviewed previously, the chemical and biochemical aspects have not been fully addressed. In this review, by critically evaluating key publications in the past 35 years, we aim to provide a comprehensive understanding of this important post-translational modification (PTM) from analytical and biochemical perspectives. Specifically, we will cover (1) multiple analytical advances in the characterization of O-GlcNAc cycling components (i.e., the substrate donor UDP-GlcNAc, the two key enzymes O-GlcNAc transferase and O-GlcNAcase, and O-GlcNAc substrate proteins), (2) the biochemical characterization of the enzymes with a variety of chemical tools, and (3) exploration of O-GlcNAc cycling and its modulating chemicals as potential biomarkers and therapeutic drugs for diseases. Last but not least, we will discuss the challenges and possible solutions for basic and translational research of protein O-GlcNAcylation in the future.

63 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the latest glycoproteomics studies published in 2018-2020, their approaches and their findings, and summarise important technological innovations in structure-focused glycoproteinomics can be found in this paper.
Abstract: Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018-2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.

37 citations