scispace - formally typeset
Search or ask a question
Author

Edwino S. Fernando

Bio: Edwino S. Fernando is an academic researcher from University of the Philippines Los Baños. The author has contributed to research in topics: Monophyly & Rafflesia. The author has an hindex of 15, co-authored 54 publications receiving 1705 citations. Previous affiliations of Edwino S. Fernando include University of the Philippines & University of the Philippines Diliman.


Papers
More filters
Journal ArticleDOI
08 Apr 2010-PLOS ONE
TL;DR: Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones are the most threatened because they are often the first cleared for development of aquaculture and agriculture.
Abstract: Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.

1,108 citations

Journal ArticleDOI
TL;DR: A robust clade of core "sapindalean" taxa is identified that is sister to representatives of Malvales and there was no support for the recognition of the two more narrowly defined orders, Rutales and Sapindales sensu stricto.
Abstract: An analysis of rbcL sequence data for representatives of families of putative sapindalean/rutalean affinity identified a robust clade of core "sapindalean" taxa that is sister to representatives of Malvales. The constitution of this clade approximates the broad concept of Sapindales (sensu Cronquist). Five lineages within the order are recognized: a "rutaceae" clade (Rutaceae, Cneoraceae, Ptaeroxylaceae, Simaroubaceae sensu stricto, and Meliaceae); a "sapindaceae" clade (Sapindaceae, Aceraceae, and Hippocastenaceae); Anacardiaceae plus Burseraceae; Kirkiaceae; and Zygophyllaceae pro parte. Relationships among these groups were only weakly resolved, but there was no support for the recognition of the two more narrowly defined orders, Rutales and Sapindales sensu stricto. Several families that have previously been allied to Sapindales or Rutales show no affinity to the core sapindalean taxa identified with the molecular data, and are excluded from the order: viz. Akaniaceae, Bretschneideraceae, Conneraceae, Coriariaceae, Melianthaceae, Meliosmaceae, Physenaceae, Rhabdodrendraceae, Sabiaceae, Staphyleaceae, Stylobasiaceae, Surianaceae, and Zygophyllaceae sensu stricto.

181 citations

Journal ArticleDOI
Stuart J. Davies1, Iveren Abiem2, Kamariah Abu Salim3, Salomón Aguilar1  +156 moreInstitutions (79)
TL;DR: ForestGEO as discussed by the authors is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types, which together provide a holistic view of forest functioning.

103 citations

Journal ArticleDOI
TL;DR: Phylogenetic analyses of rbcL sequence data of representatives of all subfamilies indicate that Simaroubaceae sensu lato is polyphyletic, and support for the affinities suggested here is also evident in nonmolecular data sources: wood anatomy, pericarp structure, pollen, and phytochemistry.
Abstract: Phylogenetic analyses of rbcL sequence data of representatives of all subfamilies indicate that Simaroubaceae sensu lato is polyphyletic. It represents at least five separate lineages, only three of which (Simarouboideae, Harrisonia, and Kirkioideae) cluster within a robust sapindalean clade. The family is monophyletic only when comprised of members of the subfamily Simarouboideae plus Leitneriaceae, but excluding Harrisonia. Harrisonia is most closely related to Cneorum and Rutaceae. Kirkioideae is distant from Simaroubaceae sensu stricto, although its affinities remain within Sapindales. The other two lineages show an affinity to taxa at some distance from Sapindales: Irvingia with a group of poorly sampled rosid I taxa comprising in part members of Linales and Malphigiales; Picramnia and Alvaradoa cluster together in an isolated position between the broadly comprised groups of rosid I and rosid II. Support for the affinities suggested here is also evident in nonmolecular data sources: wood anatomy, pericarp structure, pollen, and phytochemistry. The elevation of the picramnioid clade, comprising Picramnia and Alvaradoa, to family rank is signaled, and the recognition of Kirkiaceae and Irvingiaceae is substantiated.

77 citations

Journal ArticleDOI
TL;DR: In the first exhaustive sampling of all 65 genera of the Areceae, relationships of two of the tribe's most problematic genera, Heterospathe and Rhopaloblaste are examined using portions of the low-copy nuclear genes phosphoribulokinase (PRK) and RNA-polymerase II subunit B (RPB2).
Abstract: The complex distributions of morphological character states in the Indo-Pacific palm tribe Areceae (Arecaceae; Arecoideae) are potentially challenging for the delimitation of its genera. In the first exhaustive sampling of all 65 genera of the Areceae, we examined relationships of two of the tribe's most problematic genera, Heterospathe and Rhopaloblaste, using portions of the low-copy nuclear genes phosphoribulokinase (PRK) and RNA-polymerase II subunit B (RPB2). Both genera fell within a highly supported clade comprising all Areceae genera, but are clearly unrelated. Rhopaloblaste was strongly supported as monophyletic and is most closely related to Indian Ocean genera. Heterospathe was resolved with strong support within a clade of western Pacific genera, but with the monotypic Alsmithia nested within it. Ptychosperma micranthum, which has previously been included in both Heterospathe and Rhopaloblaste, is excluded from these and from Ptychosperma, supporting its recent placement in a new genus Dransfieldia. Morphological comparisons indicate that the crownshaft is putatively synapomorphic for the Areceae with numerous reversals within the clade and some independent origins elsewhere. The putative diagnostic characters of Heterospathe show high levels of homoplasy, and the genus can only be distinguished by a suite of characters, whereas Rhopaloblaste is more clearly defined. Our results have implications not only for the two genera in focus, but have also been influential for the new classification of the Areceae.

65 citations


Cited by
More filters
Book
10 Dec 2010
TL;DR: In this paper, the authors present a survey of eudicots: sapindales, cucurbitales, myrtaceae, and myrithaceae. And they propose a new genus named myrtium.
Abstract: Perp. punya vol. X. Flowering plant, eudicots : sapindales, cucurbitales, myrtaceae. Perp.punya: 1eks.

2,989 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified whole-ecosystem carbon storage by measuring tree and dead wood biomass, soil carbon content, and soil depth in 25 mangrove forests across a broad area of the Indo-Pacific region.
Abstract: Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30-50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting1, 2, 3, 4. Carbon emissions resulting from mangrove loss are uncertain, owing in part to a lack of broad-scale data on the amount of carbon stored in these ecosystems, particularly below ground5. Here, we quantified whole-ecosystem carbon storage by measuring tree and dead wood biomass, soil carbon content, and soil depth in 25 mangrove forests across a broad area of the Indo-Pacific region—spanning 30° of latitude and 73° of longitude—where mangrove area and diversity are greatest4, 6. These data indicate that mangroves are among the most carbon-rich forests in the tropics, containing on average 1,023 Mg carbon per hectare.

2,029 citations

01 Jan 1944
TL;DR: The only previously known species of Myrsidea from bulbuls, M. warwicki ex Ixos philippinus, is redescribed and sixteen new species are described; they and their type hosts are described.
Abstract: We redescribe the only previously known species of Myrsidea from bulbuls, M. pycnonoti Eichler. Sixteen new species are described; they and their type hosts are: M. phillipsi ex Pycnonotus goiavier goiavier (Scopoli), M. gieferi ex P. goiavier suluensis Mearns, M. kulpai ex P. flavescens Blyth, M. finlaysoni ex P. finlaysoni Strickland, M. kathleenae ex P. cafer (L.), M. warwicki ex Ixos philippinus (J. R. Forster), M. mcclurei ex Microscelis amaurotis (Temminck), M. zeylanici ex P. zeylanicus (Gmelin), M. plumosi ex P. plumosus Blyth, M. eutiloti ex P. eutilotus (Jardine and Selby), M. adamsae ex P. urostictus (Salvadori), M. ochracei ex Criniger ochraceus F. Moore, M. borbonici ex Hypsipetes borbonicus (J. R. Forster), M. johnsoni ex P. atriceps (Temminck), M. palmai ex C. ochraceus, and M. claytoni ex P. eutilotus. A key is provided for the identification of these 17 species.

1,756 citations

Journal ArticleDOI
TL;DR: It is shown that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C.
Abstract: Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

1,508 citations

Journal ArticleDOI
10 Dec 2010-Science
TL;DR: Though the threat of extinction is increasing, overall declines would have been worse in the absence of conservation, and current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups.
Abstract: Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world's vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species.

1,333 citations