scispace - formally typeset
E

Eero P. Simoncelli

Researcher at Center for Neural Science

Publications -  273
Citations -  83270

Eero P. Simoncelli is an academic researcher from Center for Neural Science. The author has contributed to research in topics: Wavelet & Image processing. The author has an hindex of 81, co-authored 260 publications receiving 68623 citations. Previous affiliations of Eero P. Simoncelli include New York University & Stanford University.

Papers
More filters
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Proceedings ArticleDOI

Multiscale structural similarity for image quality assessment

TL;DR: This paper proposes a multiscale structural similarity method, which supplies more flexibility than previous single-scale methods in incorporating the variations of viewing conditions, and develops an image synthesis method to calibrate the parameters that define the relative importance of different scales.
Journal ArticleDOI

Image denoising using scale mixtures of Gaussians in the wavelet domain

TL;DR: The performance of this method for removing noise from digital images substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Journal ArticleDOI

Natural image statistics and neural representation

TL;DR: It has long been assumed that sensory neurons are adapted to the statistical properties of the signals to which they are exposed, but recent developments in statistical modeling have enabled researchers to study more sophisticated statistical models for visual images, to validate these models empirically against large sets of data, and to begin experimentally testing the efficient coding hypothesis.
Journal ArticleDOI

A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients

TL;DR: A universal statistical model for texture images in the context of an overcomplete complex wavelet transform is presented, demonstrating the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set.