scispace - formally typeset
Search or ask a question
Author

Ehsan Najafabadi

Bio: Ehsan Najafabadi is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: OLED & Conductive polymer. The author has an hindex of 7, co-authored 8 publications receiving 1879 citations.

Papers
More filters
Journal ArticleDOI
20 Apr 2012-Science
TL;DR: It is shown that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides, conducting polymers, and graphene.
Abstract: Organic and printed electronics technologies require conductors with a work function that is sufficiently low to facilitate the transport of electrons in and out of various optoelectronic devices. We show that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides, conducting polymers, and graphene. The reduction arises from physisorption of the neutral polymer, which turns the modified conductors into efficient electron-selective electrodes in organic optoelectronic devices. These polymer surface modifiers are processed in air from solution, providing an appealing alternative to chemically reactive low–work function metals. Their use can pave the way to simplified manufacturing of low-cost and large-area organic electronic technologies.

1,870 citations

Journal ArticleDOI
TL;DR: In this paper, solar cells on recyclable cellulose nanocrystal (CNC) substrates with a new device structure where polyethylenimine-modified Ag is used as the bottom electron-collecting electrode and high-conductivity poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS, PH1000) was used as a semitransparent top hole collecting electrode.

108 citations

Journal ArticleDOI
TL;DR: Stacked inverted top-emitting green electrophosphorescent organic lightemitting diodes (OLEDs) are demonstrated on glass and flexible glass substrates in this article, where the double-unit inverted OLED exhibits a current efficacy more than twice that of the single-unit OLED.

33 citations

Journal ArticleDOI
TL;DR: In this article, an inverted top-emitting architecture on recyclable cellulose nanocrystal (CNC) substrates was proposed for organic light emitting diodes (OLEDs).
Abstract: Organic light-emitting diodes (OLEDs) fabricated on recyclable and biodegradable substrates are a step towards the realization of a sustainable OLED technology. We report on efficient OLEDs with an inverted top-emitting architecture on recyclable cellulose nanocrystal (CNC) substrates. The OLEDs have a bottom cathode of Al/LiF deposited on a 400 nm thick N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (α-NPD) layer and a top anode of Au/MoO3. They achieve a maximum luminance of 74 591 cd/m2 with a current efficacy of 53.7 cd/A at a luminance of 100 cd/m2 and 41.7 cd/A at 1000 cd/m2. It is shown that the α-NPD layer on the CNC substrate is necessary for achieving high performance OLEDs. The electroluminescent spectra of the OLEDs as a function of viewing angle are presented and show that the OLED spectra are subject to microcavity effects.

32 citations

Journal ArticleDOI
TL;DR: In this paper, a green phosphorescent inverted top-emitting organic lightemitting diodes with high current efficacy and luminance are demonstrated on glass and polyethersulfone (PES) substrates coated with polyethylene dioxythiophene-polystyrene sulfonate (PEDOT:PSS).
Abstract: Green phosphorescent inverted top-emitting organic light-emitting diodes with high current efficacy and luminance are demonstrated on glass and polyethersulfone (PES) substrates coated with polyethylene dioxythiophene-polystyrene sulfonate (PEDOT:PSS). The bottom cathode is an aluminum/lithium fluoride bilayer that injects electrons efficiently into an electron transport layer of 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TpPyPB). The cathode is found to be highly sensitive to the exposure of trace amounts of O2 and H2O. A high current efficacy of 96.3 cd/A is achieved at a luminance of 1387 cd/m2 when an optical outcoupling layer of N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (α-NPD) is deposited on the anode.

28 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations

Journal ArticleDOI
TL;DR: Perovskite quantum wells yield highly efficient LEDs spanning the visible and near-infrared as discussed by the authors. But their performance is not as good as those of traditional LEDs, and their lifetime is shorter.
Abstract: Perovskite quantum wells yield highly efficient LEDs spanning the visible and near-infrared.

1,419 citations

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.
Abstract: Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society—for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1–3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6–9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved—values that approach those of the best-performing organic LEDs. The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.

1,404 citations