scispace - formally typeset
Search or ask a question
Author

Ehtesham Jameel

Bio: Ehtesham Jameel is an academic researcher from B. R. Ambedkar Bihar University. The author has contributed to research in topics: Protein kinase A & Docking (molecular). The author has an hindex of 10, co-authored 15 publications receiving 465 citations. Previous affiliations of Ehtesham Jameel include Jamia Millia Islamia & Zhejiang University.

Papers
More filters
Journal ArticleDOI
TL;DR: The aspects of the photocytotoxicity, redox activity and multinuclearity of anticancer iron complexes are discussed, in addition to discussing ferrocenyl derivatives and salen complexes.
Abstract: The revelation of the anticancer properties of cisplatin has inspired research into metal complexes for the treatment of cancer. Several second and third generation cisplatin analogues were developed with claims of good anticancer properties and reduced side effects. However, the persistence of some side effects and the resistance of cancer cells have tempted scientists to explore new metal complexes as anticancer drugs. Therefore, the approach of rational drug design has been extended to the development of non-platinum anticancer drugs, and a large number of such complexes have been developed. Iron complexes are of interest to inorganic medicinal chemists for the development of anticancer agents. The anticancer potency of iron complexes was first reported in ferrocenium picrate and ferrocenium trichloroacetate salts, and was attributed to their ability to form reactive oxygen species, leading to oxidative DNA damage. This review discusses the advances in iron complexes as anticancer agents. The aspects of the photocytotoxicity, redox activity and multinuclearity of anticancer iron complexes are discussed, in addition to discussing ferrocenyl derivatives and salen complexes. The legacy of nanotechnology and synergism in harnessing the potential of iron complexes is highlighted. Finally, the current challenges and future perspectives of iron complexes as anticancer agents are outlined.

116 citations

Journal ArticleDOI
TL;DR: The present article describes the structural, chemical and biological features of ferroquine, a derivative of chloroquine with antimalarial properties, and discusses the current challenges and future perspectives of feroquine-based antimalaria drug development.

94 citations

Journal ArticleDOI
TL;DR: This review undertakes estimation of the wide spectrum of studies focusing coumarin to the domain of drug research for ND, and searches for multitarget cou marin‐based inhibitors and their scope for NDs.
Abstract: Drug development for neurodegenerative diseases (NDs) is foremost task for the medicinal chemists in the 21st century. Coumarins are exemplary of an assorted and aptitudinally useful set of drugs. Coumarins play a momentous role in several pharmacological and medicinal aspects. Its analogues are anticipated to play a significant role in the development of new therapeutic leads for NDs. Their promising applications in the field of ND medication are exemplified by clinical candidates such as nodakenin that have been potent for demoting memory impairment. Apart from ND, clinically used anticoagulant warfarin, anticoagulant dicoumarol, and antibiotic coumermycin, novobiocin and chartesium grab the interest of researchers in coumarins. It would be worthwhile to look at the different biological processes that could cause neurodegeneration, thereby establishing a link with distinct coumarin derivatives to serve the purpose of medication. This review undertakes estimation of the wide spectrum of studies focusing coumarin to the domain of drug research for ND. Herein, we search for multitarget coumarin-based inhibitors and their scope for NDs. Future challenges in coumarin-based drug development have been discussed, and emphases have been laid on the future perspectives of coumarins as possible drugs in the future for the treatment of NDs.

86 citations

Journal ArticleDOI
TL;DR: In insights into designing a new inspired curcumin derivatives as therapeutic agents against many life-threatening diseases, the interaction ofCurcumin with human CAMK4 is studied using molecular docking, molecular dynamics simulations, fluorescence binding, and surface plasmon resonance (SPR) methods.
Abstract: Calcium–calmodulin-dependent protein kinase IV (CAMK4) plays significant role in the regulation of calcium-dependent gene expression, and thus, it is involved in varieties of cellular functions such as cell signaling and neuronal survival. On the other hand, curcumin, a naturally occurring yellow bioactive component of turmeric possesses wide spectrum of biological actions, and it is widely used to treat atherosclerosis, diabetes, cancer, and inflammation. It also acts as an antioxidant. Here, we studied the interaction of curcumin with human CAMK4 at pH 7.4 using molecular docking, molecular dynamics (MD) simulations, fluorescence binding, and surface plasmon resonance (SPR) methods. We performed MD simulations for both neutral and anionic forms of CAMK4-curcumin complexes for a reasonably long time (150 ns) to see the overall stability of the protein–ligand complex. Molecular docking studies revealed that the curcumin binds in the large hydrophobic cavity of kinase domain of CAMK4 through several hydrop...

70 citations

Journal ArticleDOI
TL;DR: In this article, a series of triazolopyrimidine-quinoline and cyanopyridine-quinoline hybrids were designed, synthesized and evaluated as acetylcholinesterase inhibitors (AChEIs).

49 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Dec 1941-Nature
TL;DR: The Pharmacological Basis of Therapeutics, by Prof. Louis Goodman and Prof. Alfred Gilman, New York: The Macmillan Company, 1941, p.
Abstract: The Pharmacological Basis of Therapeutics A Textbook of Pharmacology, Toxicology and Therapeutics for Physicians and Medical Students. By Prof. Louis Goodman and Prof. Alfred Gilman. Pp. xiii + 1383. (New York: The Macmillan Company, 1941.) 50s. net.

2,686 citations

Journal ArticleDOI
TL;DR: This comprehensive and critical review of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018 may facilitate the development of more powerful fluorescent chemOSensors for broad and exciting applications in the future.
Abstract: Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.

668 citations

Journal ArticleDOI
06 Sep 2017
TL;DR: The unique properties of ferrocene-containing compounds make them useful for treating many diseases, such as cancer and antimalarial ferroquine as mentioned in this paper, but these drugs have not yet met clinical validation.
Abstract: The unique properties of ferrocene-containing compounds make them useful for treating many diseases. The most notable drug candidates — the antimalarial ferroquine and the anticancer agent ferrocifen — have been studied for more than two decades but have not yet met clini…

329 citations

Journal ArticleDOI
TL;DR: It is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas such as antibacterial, antifungal, anticancer, and so on.
Abstract: Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.

319 citations