scispace - formally typeset
Search or ask a question
Author

Eicke R. Weber

Bio: Eicke R. Weber is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Silicon & Molecular beam epitaxy. The author has an hindex of 63, co-authored 513 publications receiving 29856 citations. Previous affiliations of Eicke R. Weber include Lawrence Livermore National Laboratory & Lund University.


Papers
More filters
Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
TL;DR: In this paper, the capacitance matrix was calculated for different chain lengths using the software package FastCap MIT (1992) and a ligand shell dielectric constant of 3.14 aF.
Abstract: nanoparticles in dimethylsulfoxide onto the PLL film for about 20 min, after which it was rinsed in dimethylsulfoxide and then dichloromethane. From the molecular weight, the average length of the PLL is about 30 nm. Therefore, each polymer can accommodate about seven or eight nanoparticles. [20] L. Clarke, M. N. Wybourne, M. Yan, S. X. Cai, J. F. W. Keana, Appl. Phys. Lett. 1997, 71, 617. [21] A. A. Middleton, N. S. Wingreen, Phys. Rev. Lett. 1993, 71, 3198. [22] G. Y. Hu, R. F. O'Connell, Phys. Rev. B 1994, 49, 16 773. [23] A. J. Rimberg, T. R. Ho, J. Clarke, Phys. Rev. Lett. 1995, 74, 4714. [24] L. Clarke, M. N. Wybourne, M. Yan, S. X. Cai, L. O. Brown, J. Hutchison, J. F. W. Keana, J. Vac. Sci. Technol. B 1997, 15, 2925. [25] The capacitance matrix was calculated for different chain lengths using the software package FastCap MIT (1992). We used the nanoparticle dimensions given in the text and a ligand shell dielectric constant of 3. For nanoclusters away from the end of the chains we obtain Cdd » 0.04 aF and Cg » 0.17 aF. As expected, the value of Cg is slightly larger than the value calculated for an isolated metal sphere of radius a coated with a dielectric shell, Cg» (4pee0a)/(1 + (a/d)(e±1)) = 0.14 aF, where d is the total radius of the core plus ligand shell. [26] Simulations were carried out using both MOSES (Monte-Carlo SingleElectronics Simulator, R. H. Chen) and SIMON (Simulation of Nano Structures, C. Wasshuber). [27] S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, R. L. Whetton, Science 1998, 280, 2098. [28] L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo, R. I. Shekhter, M. Jonson, Phys. Rev. Lett. 1998, 80, 4526. [29] O. D. Häberlen, S. C. Chung, M. Stener, N. Rösch, J. Chem. Phys. 1997, 106, 5189. [30] Y. Awakuni, J. H. Calderwood, J. Phys. D: Appl. Phys. 1972, 5, 1038. [31] G. Markovich, C. P. Collier, J. R. Heath, Phys. Rev. Lett. 1998, 80, 3807. [32] C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Hendrichs, J. R. Heath, Science 1997, 277, 1978. [33] N. Mott, Metal Insulator Transitions, Taylor and Francis, London 1990.

2,726 citations

Journal ArticleDOI
TL;DR: In this paper, a review on the diffusion, solubility and electrical activity of 3D transition metals in silicon is given, which can be divided into two groups according to the respective enthalpy of formation of the solid solution.
Abstract: A review is given on the diffusion, solubility and electrical activity of 3d transition metals in silicon. Transition elements (especially, Cr, Mn, Fe, Co, Ni, and Cu) diffuse interstitially and stay in the interstitial site in thermal equilibrium at the diffusion temperature. The parameters of the liquidus curves are identical for the Si:Ti — Si:Ni melts, indicating comparable silicon-metal interaction for all these elements. Only Cr, Mn, and Fe could be identified in undisturbed interstitial sites after quenching, the others precipitated or formed complexes. The 3d elements can be divided into two groups according to the respective enthalpy of formation of the solid solution. The distinction can arise from different charge states of these impurities at the diffusion temperature. For the interstitial 3d atoms remaining after quenching, reliable energy levels are established from the literature and compared with recent calculations.

987 citations

Journal ArticleDOI
TL;DR: Stochichiometric variations in the GaN thin films together with the design of specific buffer layers can be utilized to strain engineer the material to an extent that greatly exceeds the possibilities known from other semiconductor systems because of the largely different covalent radii of the Ga and the N atom.
Abstract: Photoluminescence (PL), Raman spectroscopy, and x-ray diffraction are employed to demonstrate the co-existence of a biaxial and a hydrostatic strain that can be present in GaN thin films. The biaxial strain originates from growth on lattice-mismatched substrates and from post-growth cooling. An additional hydrostatic strain is shown to be introduced by the presence of point defects. A consistent description of the experimental results is derived within the limits of the linear and isotropic elastic theory using a Poisson ratio $\ensuremath{ u}=0.23\ifmmode\pm\else\textpm\fi{}0.06$ and a bulk modulus $B=200\ifmmode\pm\else\textpm\fi{}20$ GPa. These isotropic elastic constants help to judge the validity of published anisotropic elastic constants that vary greatly. Calibration constants for strain-induced shifts of the near-band-edge PL lines with respect to the ${E}_{2}$ Raman mode are given for strain-free, biaxially strained, and hydrostatically contracted or expanded thin films. They allow us to extract differences between hydrostatic and biaxial stress components if present. In particular, we determine that a biaxial stress of one GPa would shift the near-band-edge PL lines by 27\ifmmode\pm\else\textpm\fi{}2 meV and the ${E}_{2}$ Raman mode by 4.2\ifmmode\pm\else\textpm\fi{}0.3 ${\mathrm{cm}}^{\ensuremath{-}1}$ by use of the listed isotropic elastic constants. It is expected from the analyses that stoichiometric variations in the GaN thin films together with the design of specific buffer layers can be utilized to strain engineer the material to an extent that greatly exceeds the possibilities known from other semiconductor systems because of the largely different covalent radii of the Ga and the N atom.

786 citations

Patent
29 Mar 2002
TL;DR: One-dimensional nanostructures have uniform diameters of less than approximately 200 nm and are referred to as "nanowires" as mentioned in this paper, which include single-crystalline materials having different chemical compositions.
Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

650 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
14 Apr 2006-Science
TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Abstract: We have converted nanoscale mechanical energy into electrical energy by means of piezoelectric zinc oxide nanowire (NW) arrays. The aligned NWs are deflected with a conductive atomic force microscope tip in contact mode. The coupling of piezoelectric and semiconducting properties in zinc oxide creates a strain field and charge separation across the NW as a result of its bending. The rectifying characteristic of the Schottky barrier formed between the metal tip and the NW leads to electrical current generation. The efficiency of the NW-based piezoelectric power generator is estimated to be 17 to 30%. This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.

6,692 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations