scispace - formally typeset
Search or ask a question
Author

Eider Moore

Bio: Eider Moore is an academic researcher from Google. The author has contributed to research in topics: Language model & Stochastic gradient descent. The author has an hindex of 4, co-authored 4 publications receiving 5394 citations.

Papers
More filters
Posted Content
H. Brendan McMahan1, Eider Moore1, Daniel Ramage1, Seth Hampson, Blaise Aguera y Arcas1 
TL;DR: This work presents a practical method for the federated learning of deep networks based on iterative model averaging, and conducts an extensive empirical evaluation, considering five different model architectures and four datasets.
Abstract: Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning. We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100x as compared to synchronized stochastic gradient descent.

5,936 citations

Proceedings Article
H. Brendan McMahan1, Eider Moore1, Daniel Ramage1, Seth Hampson, Blaise Aguera y Arcas1 
10 Apr 2017
TL;DR: In this paper, the authors presented a decentralized approach for federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets.
Abstract: Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device For example, language models can improve speech recognition and text entry, and image models can automatically select good photos However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates We term this decentralized approach Federated Learning We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100x as compared to synchronized stochastic gradient descent

3,008 citations

Posted Content
TL;DR: This work presents a practical method for the federated learning of deep networks that proves robust to the unbalanced and non-IID data distributions that naturally arise, and allows high-quality models to be trained in relatively few rounds of communication.
Abstract: Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data-center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning. We present a practical method for the federated learning of deep networks that proves robust to the unbalanced and non-IID data distributions that naturally arise. This method allows high-quality models to be trained in relatively few rounds of communication, the principal constraint for federated learning. The key insight is that despite the non-convex loss functions we optimize, parameter averaging over updates from multiple clients produces surprisingly good results, for example decreasing the communication needed to train an LSTM language model by two orders of magnitude.

985 citations

Patent
Hugh Brendan McMahan1, Jakub Konecny1, Eider Moore1, Daniel Ramage1, Blaise Aguera-Arcas1 
14 Oct 2016
TL;DR: In this article, the authors provide a system and methods of determining a global model from a plurality of user devices, where each local update can be determined by the respective user device based at least in part on one or more data examples stored on the user device.
Abstract: Systems and methods of determining a global model are provided. In particular, one or more local updates can be received from a plurality of user devices. Each local update can be determined by the respective user device based at least in part on one or more data examples stored on the user device. The one or more data examples stored on the plurality of user devices are distributed on an uneven basis, such that no user device includes a representative sample of the overall distribution of data examples. The local updates can then be aggregated to determine a global model.

13 citations


Cited by
More filters
Posted Content
TL;DR: Two ways to reduce the uplink communication costs are proposed: structured updates, where the user directly learns an update from a restricted space parametrized using a smaller number of variables, e.g. either low-rank or a random mask; and sketched updates, which learn a full model update and then compress it using a combination of quantization, random rotations, and subsampling.
Abstract: Federated Learning is a machine learning setting where the goal is to train a high-quality centralized model while training data remains distributed over a large number of clients each with unreliable and relatively slow network connections. We consider learning algorithms for this setting where on each round, each client independently computes an update to the current model based on its local data, and communicates this update to a central server, where the client-side updates are aggregated to compute a new global model. The typical clients in this setting are mobile phones, and communication efficiency is of the utmost importance. In this paper, we propose two ways to reduce the uplink communication costs: structured updates, where we directly learn an update from a restricted space parametrized using a smaller number of variables, e.g. either low-rank or a random mask; and sketched updates, where we learn a full model update and then compress it using a combination of quantization, random rotations, and subsampling before sending it to the server. Experiments on both convolutional and recurrent networks show that the proposed methods can reduce the communication cost by two orders of magnitude.

2,980 citations

Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Journal ArticleDOI
TL;DR: This work introduces a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federatedLearning, and federated transfer learning, and provides a comprehensive survey of existing works on this subject.
Abstract: Today’s artificial intelligence still faces two major challenges. One is that, in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated-learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federated learning, and federated transfer learning. We provide definitions, architectures, and applications for the federated-learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allowing knowledge to be shared without compromising user privacy.

2,593 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.
Abstract: Federated learning involves training statistical models over remote devices or siloed data centers, such as mobile phones or hospitals, while keeping data localized. Training in heterogeneous and potentially massive networks introduces novel challenges that require a fundamental departure from standard approaches for large-scale machine learning, distributed optimization, and privacy-preserving data analysis. In this article, we discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.

2,163 citations

Proceedings ArticleDOI
30 Oct 2017
TL;DR: In this paper, the authors proposed a secure aggregation of high-dimensional data for federated deep neural networks, which allows a server to compute the sum of large, user-held data vectors from mobile devices in a secure manner without learning each user's individual contribution.
Abstract: We design a novel, communication-efficient, failure-robust protocol for secure aggregation of high-dimensional data. Our protocol allows a server to compute the sum of large, user-held data vectors from mobile devices in a secure manner (i.e. without learning each user's individual contribution), and can be used, for example, in a federated learning setting, to aggregate user-provided model updates for a deep neural network. We prove the security of our protocol in the honest-but-curious and active adversary settings, and show that security is maintained even if an arbitrarily chosen subset of users drop out at any time. We evaluate the efficiency of our protocol and show, by complexity analysis and a concrete implementation, that its runtime and communication overhead remain low even on large data sets and client pools. For 16-bit input values, our protocol offers $1.73 x communication expansion for 210 users and 220-dimensional vectors, and 1.98 x expansion for 214 users and 224-dimensional vectors over sending data in the clear.

1,890 citations