scispace - formally typeset
Search or ask a question
Author

Eiichi Hanamura

Bio: Eiichi Hanamura is an academic researcher from Chitose Institute of Science and Technology. The author has contributed to research in topics: Exciton & Raman scattering. The author has an hindex of 36, co-authored 206 publications receiving 5002 citations. Previous affiliations of Eiichi Hanamura include University of Tokyo & National Institute of Advanced Industrial Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The nonlinear optical polarizability is shown to be greatly enhanced for an assembly of such microcrystallites as the exciton is quantized due to the confinement effect and the excitons in a single microCrystallite interact strongly enough to make theexcitons deviate from ideal harmonic oscillators.
Abstract: We analyze theoretically the oscillator strength and the third-order optical polarizability X 13, due to excitons in semiconductor microcrystallites. The nonlinear optical polarizability is shown to be greatly enhanced for an assembly of such microcrystallites as the exciton is quantized due to the confinement effect and the excitons in a single microcrystallite interact strongly enough to make the excitons deviate from ideal harmonic oscillators.

540 citations

Book
30 Jan 2012

371 citations

Journal ArticleDOI
TL;DR: The nonlinear optical phenomena are expected to have a fast response time of a picosecond in GaAs quantum wells and a subpicose Cond in CdS quantum wells through the short lifetime of excitons.
Abstract: An exciton has a macroscopic transition dipole moment because it is a coherent excitation over the whole crystal. The interaction of this exciton with a radiation field, which results in a polariton in a bulk crystal, brings about the rapid radiative decay of the exciton in low-dimensional systems due to breakdown of the translational symmetry. This large decay constant at the same time makes the excitons deviate from ideal bosons so that we have a large third-order optical susceptibility enhanced by the macroscopic transition dipole moment under near-resonant excitation. The nonlinear optical phenomena are expected to have a fast response time of a picosecond in GaAs quantum wells and a subpicosecond in CdS quantum wells through the short lifetime of excitons.

307 citations

Journal ArticleDOI
TL;DR: The theory of the electronic excitations in a highly excited semiconductor is presented in this paper, where the relaxation processes, the formation of excitons and excitonic molecules, the interaction among the various forms of electronic excitation, as well as their optical and thermodynamical properties are analyzed.

252 citations

Journal ArticleDOI
TL;DR: In this paper, the binding energy of the excitonic molecule, a complex consisting of two electrons and two positive holes, is calculated as a function of the mass ratio m e / m h by avariational method.
Abstract: The binding energy of the excitonic molecule, a complex consisting of two electrons and two positive holes, is calculated as a function of the mass ratio m e / m h by avariational method. It is shown that the excitonic molecule is stable for any value of the mass ratio. For m e = m h , the binding energy is estimated to be 0.00684 \(m_{\text{e}}e^{4}/{\varepsilon_{0}}^{2}\hbar^{2}\). Some results about the wave function are also presented.

168 citations


Cited by
More filters
Journal ArticleDOI
Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.

4,315 citations

Journal ArticleDOI
06 Nov 2003-Nature
TL;DR: The discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering and gigantic magnetoelectric and magnetocapacitance effects are found.
Abstract: The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon. From a technological point of view, the mutual control of electric and magnetic properties is an attractive possibility, but the number of candidate materials is limited and the effects are typically too small to be useful in applications. Here we report the discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO3, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.

3,769 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovSKite family for electronic, optical, and energy-based applications as well as fundamental research.
Abstract: Although known since the late 19th century, organic–inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic–inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

1,962 citations

Journal ArticleDOI
TL;DR: This paper is a review of recent progress made in organic thin films grown in ultrahigh vacuum or using other vapor-phase deposition methods and describes the most important work which has been published in this field since the emergence of OMBD in the mid-1980s.
Abstract: During the past decade, enormous progress has been made in growing ultrathin organic films and multilayer structures with a wide range of exciting optoelectronic properties. This progress has been made possible by several important advances in our understanding of organic films and their modes of growth. Perhaps the single most important advance has been the use of ultrahigh vacuum (UHV) as a means to achieve, for the first time, monolayer control over the growth of organic thin films with extremely high chemical purity and structural precision.1-3 Such monolayer control has been possible for many years using well-known techniques such as Langmuir-Blodgett film deposition,4 and more recently, self-assembled monolayers from solution have also been achieved.5 However, ultrahighvacuum growth, sometimes referred to as organic molecular beam deposition (OMBD) or organic molecular beam epitaxy (OMBE), has the advantage of providing both layer thickness control and an atomically clean environment and substrate. When combined with the ability to perform in situ highresolution structural diagnostics of the films as they are being deposited, techniques such as OMBD have provided an entirely new prospect for understanding many of the fundamental structural and optoelectronic properties of ultrathin organic film systems. Since such systems are both of intrinsic as well as practical interest, substantial effort worldwide has been invested in attempting to grow and investigate the properties of such thin-film systems. This paper is a review of recent progress made in organic thin films grown in ultrahigh vacuum or using other vapor-phase deposition methods. We will describe the most important work which has been published in this field since the emergence of OMBD in the mid-1980s. Both the nature of thin-film growth and structural ordering will be discussed, as well as some of the more interesting consequences to the physical properties of such organic thin-film systems will be considered both from a theoretical as well as an experimental viewpoint. Indeed, it will 1793 Chem. Rev. 1997, 97, 1793−1896

1,809 citations