scispace - formally typeset
Search or ask a question
Author

Eiichiro Komatsu

Bio: Eiichiro Komatsu is an academic researcher from Max Planck Society. The author has contributed to research in topics: Cosmic microwave background & Redshift. The author has an hindex of 91, co-authored 360 publications receiving 98677 citations. Previous affiliations of Eiichiro Komatsu include University of Chicago & Tohoku University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the angular power spectra derived from the seven-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone are presented. But the results are limited to the case of L 2.
Abstract: The WMAP mission has produced sky maps from seven years of observations at L2. We present the angular power spectra derived from the seven-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. With the seven-year data, the temperature (TT) spectrum measurement has a signal-to-noise ratio per multipole that exceeds unity for l 2.7(95%CL). Also, using WMAP data alone, the primordial helium mass fraction is found to be Y He = 0.28+0.14 ?0.15, and with data from higher-resolution cosmic microwave background experiments included, we now establish the existence of pre-stellar helium at >3?. These new WMAP measurements provide important tests of big bang cosmology.

1,462 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented new full-sky temperature and polarization maps based on seven years of data from WMAP, which are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures.
Abstract: New full-sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven-year data set is well fit by a minimal six-parameter flat ?CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H 0 from Hubble Space Telescope observations, are ? b h 2 = 0.02260 ? 0.00053, ? c h 2 = 0.1123 ? 0.0035, ?? = 0.728+0.015 ?0.016, ns = 0.963 ? 0.012, ? = 0.087 ? 0.014, and ?8 = 0.809 ? 0.024 (68% CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles ? 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, ? m h 2 = 0.1334+0.0056 ?0.0055, and the epoch of matter-radiation equality, z eq = 3196+134 ?133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, result in a 3? detection of the abundance of primordial helium, Y He = 0.326 ? 0.075. When combined with additional external data sets, the WMAP data also yield better determinations of the total mass of neutrinos, ?m ? ? 0.58 eV(95%CL), and the effective number of neutrino species, N eff = 4.34+0.86 ?0.88. The power-law index of the primordial power spectrum is now determined to be ns = 0.963 ? 0.012, excluding the Harrison-Zel'dovich-Peebles spectrum by >3?. These new WMAP measurements provide important tests of big bang cosmology.

1,396 citations

Journal ArticleDOI
TL;DR: A review of models of inflation and their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe is given in this article.

1,222 citations

Journal ArticleDOI
TL;DR: In this paper, the angular bispectrum of the primary CMB anisotropy was used to estimate the expected signal-to-noise ratio for COBE, MAP, and Planck experiments.
Abstract: If the primordial fluctuations are non-Gaussian, then this non-Gaussianity will be apparent in the cosmic microwave background (CMB) sky. With their sensitive all-sky observation, MAP and Planck satellites should be able to detect weak non-Gaussianity in the CMB sky. On a large angular scale, there is a simple relationship between the CMB temperature and the primordial curvature perturbation: $\ensuremath{\Delta}T/T=\ensuremath{-}\ensuremath{\Phi}/3.$ On smaller scales, however, the radiation transfer function becomes more complex. In this paper, we present the angular bispectrum of the primary CMB anisotropy that uses the full transfer function. We find that the bispectrum has a series of acoustic peaks that change a sign and a period of acoustic oscillations is twice as long as that of the angular power spectrum. Using a single non-linear coupling parameter to characterize the amplitude of the bispectrum, we estimate the expected signal-to-noise ratio for COBE, MAP, and Planck experiments. In order to detect the primary CMB bispectrum by each experiment, we find that the coupling parameter should be larger than 600, 20, and 5 for COBE, MAP, and Planck experiments, respectively. Even for the ideal noise-free and infinitesimal thin-beam experiment, the parameter should be larger than 3. We have included effects from the cosmic variance, detector noise, and foreground sources in the signal-to-noise estimation. Since the simple inflationary scenarios predict that the parameter is an order of 0.01, the detection of the primary bispectrum by any kind of experiments should be problematic for those scenarios. We compare the sensitivity of the primary bispectrum to the primary skewness and conclude that, when we can compute the predicted form of the bispectrum, it becomes a ``matched filter'' for detecting the non-Gaussianity in the data and a much more powerful tool than the skewness. For example, we need the coupling parameter of larger than 800, 80, 70, and 60 for each relevant experiment in order to detect the primary skewness. We also show that MAP and Planck can separate the primary bispectrum from various secondary bispectra on the basis of the shape difference. The primary CMB bispectrum is a test of the inflationary scenario and also a probe of the non-linear physics in the very early universe.

1,135 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data.
Abstract: We confront predictions of inflationary scenarios with the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data. The WMAP detection of a large-angle anticorrelation in the temperature-polarization cross-power spectrum is the signature of adiabatic superhorizon fluctuations at the time of decoupling. The WMAP data are described by pure adiabatic fluctuations: we place an upper limit on a correlated cold dark matter (CDM) isocurvature component. Using WMAP constraints on the shape of the scalar power spectrum and the amplitude of gravity waves, we explore the parameter space of inflationary models that is consistent with the data. We place limits on inflationary models; for example, a minimally coupled λ4 is disfavored at more than 3 σ using WMAP data in combination with smaller scale CMB and large-scale structure survey data. The limits on the primordial parameters using WMAP data alone are ns(k0 = 0.002 Mpc-1) = 1.20, dns/d ln k = -0.077, A(k0 = 0.002 Mpc-1) = 0.71 (68% CL), and r(k0 = 0.002 Mpc-1) < 1.28 (95% CL).

1,093 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations