scispace - formally typeset
Search or ask a question
Author

Eino Palin

Bio: Eino Palin is an academic researcher from University of Helsinki. The author has contributed to research in topics: Mitochondrial DNA & Spinocerebellar ataxia. The author has an hindex of 9, co-authored 11 publications receiving 294 citations. Previous affiliations of Eino Palin include Helsinki University Central Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: Childhood cardiomyopathies are typically caused by rare, family-specific mutations, most commonly de novo, indicating that next-generation sequencing of trios is the approach of choice in their diagnosis.

97 citations

Journal ArticleDOI
TL;DR: The clinical relevance of the findings is substantiated by the discovery of homozygous PARKIN (PARK2) p.S65N mutations in two unrelated patients with PD and biochemical and structural analysis demonstrates that the ParkinS 65N/S65n mutant is pathogenic and cannot be activated by PINK1.
Abstract: Mutations in PINK1 and Parkin result in autosomal recessive Parkinson's disease (PD). Cell culture and in vitro studies have elaborated the PINK1-dependent regulation of Parkin and defined how this dyad orchestrates the elimination of damaged mitochondria via mitophagy. PINK1 phosphorylates ubiquitin at serine 65 (Ser65) and Parkin at an equivalent Ser65 residue located within its N-terminal ubiquitin-like domain, resulting in activation; however, the physiological significance of Parkin Ser65 phosphorylation in vivo in mammals remains unknown. To address this, we generated a Parkin Ser65Ala (S65A) knock-in mouse model. We observe endogenous Parkin Ser65 phosphorylation and activation in mature primary neurons following mitochondrial depolarization and reveal this is disrupted in ParkinS65A/S65A neurons. Phenotypically, ParkinS65A/S65A mice exhibit selective motor dysfunction in the absence of any overt neurodegeneration or alterations in nigrostriatal mitophagy. The clinical relevance of our findings is substantiated by the discovery of homozygous PARKIN (PARK2) p.S65N mutations in two unrelated patients with PD. Moreover, biochemical and structural analysis demonstrates that the ParkinS65N/S65N mutant is pathogenic and cannot be activated by PINK1. Our findings highlight the central role of Parkin Ser65 phosphorylation in health and disease.

78 citations

Journal ArticleDOI
TL;DR: Mutations in ATAD3A can be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability, and this finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity.
Abstract: De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity.

60 citations

Journal ArticleDOI
TL;DR: Assessing the structure–function relationships for recessive disease mutations by reviewing existing biochemical data on site-directed mutagenesis of the human, Drosophila and yeast Pol γs, and their homologs from the family A DNA polymerase group suggests that cluster prediction can be used as a diagnosis-supporting tool to evaluate the pathogenic role of new Polγ variants.
Abstract: Mutations in Pol γ represent a major cause of human mitochondrial diseases, especially those affecting the nervous system in adults and in children. Recessive mutations in Pol γ represent nearly half of those reported to date, and they are nearly uniformly distributed along the length of the POLG1 gene (Human DNA Polymerase gamma Mutation Database); the majority of them are linked to the most severe form of POLG syndrome, Alpers-Huttenlocher syndrome. In this report, we assess the structure-function relationships for recessive disease mutations by reviewing existing biochemical data on site-directed mutagenesis of the human, Drosophila and yeast Pol γs, and their homologs from the family A DNA polymerase group. We do so in the context of a molecular model of Pol γ in complex with primer-template DNA, which we have developed based upon the recently solved crystal structure of the apoenzyme form. We present evidence that recessive mutations cluster within five distinct functional modules in the catalytic core of Pol γ. Our results suggest that cluster prediction can be used as a diagnosis-supporting tool to evaluate the pathogenic role of new Pol γ variants.

45 citations

Journal ArticleDOI
01 Aug 2013-Brain
TL;DR: It is shown here that all patients with mitochondrial DNA maintenance disorders had neuronopathy in substantia nigra, most severe in DNA polymerase gamma-associated parkinsonism.
Abstract: Genetic evidence from recessively inherited Parkinson's disease has indicated a clear causative role for mitochondrial dysfunction in Parkinson's disease. This role has long been discussed based on findings that toxic inhibition of mitochondrial respiratory complex I caused parkinsonism and that tissues of patients with Parkinson's disease show complex I deficiency. Disorders of mitochondrial DNA maintenance are a common cause of inherited neurodegenerative disorders, and lead to mitochondrial DNA deletions or depletion and respiratory chain defect, including complex I deficiency. However, parkinsonism associates typically with defects of catalytic domain of mitochondrial DNA polymerase gamma. Surprisingly, however, not all mutations affecting DNA polymerase gamma manifest as parkinsonism, but, for example, spacer region mutations lead to spinocerebellar ataxia and/or severe epilepsy. Furthermore, defective Twinkle helicase, a close functional companion of DNA polymerase gamma in mitochondrial DNA replication, results in infantile-onset spinocerebellar ataxia, epilepsy or adult-onset mitochondrial myopathy, but not typically parkinsonism. Here we sought for clues for this specificity in the neurological manifestations of mitochondrial DNA maintenance disorders by studying mesencephalic neuropathology of patients with DNA polymerase gamma or Twinkle defects, with or without parkinsonism. We show here that all patients with mitochondrial DNA maintenance disorders had neuronopathy in substantia nigra, most severe in DNA polymerase gamma-associated parkinsonism. The oculomotor nucleus was also affected, but less severely. In substantia nigra, all patients had a considerable decrease of respiratory chain complex I, but other respiratory chain enzymes were not affected. Complex I deficiency did not correlate with parkinsonism, age, affected gene or inheritance. We conclude that the cell number in substantia nigra correlated well with parkinsonism in DNA polymerase gamma and Twinkle defects. However, complex I defect is a general consequence of mitochondrial DNA maintenance defects, and does not explain manifestation of parkinsonism or degree of mesencephalic cell death in patients with mitochondrial DNA maintenance disorders.

42 citations


Cited by
More filters
Journal ArticleDOI
16 Mar 2012-Cell
TL;DR: This work provides a current view of how mitochondrial functions impinge on health and disease and identifies mitochondrial dysfunction as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders.

2,266 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: In this article, the role of NAD+ and related metabolites in the adaptation of neurons to a wide range of physiological stressors and in counteracting processes in neurodegenerative diseases, such as those occurring in Alzheimer's, Parkinson's, and Huntington diseases, and amyotrophic lateral sclerosis.

330 citations

Journal ArticleDOI
01 Jul 2019-Nature
TL;DR: Intestinal infection with Gram-negative bacteria in Pink1 −/− mice engages mitochondrial antigen presentation and autoimmune mechanisms that elicit the establishment of cytotoxic mitochondria-specific CD8+ T cells in the periphery and in the brain, supporting the idea that PINK1 is a repressor of the immune system.
Abstract: Parkinson’s disease is a neurodegenerative disorder with motor symptoms linked to the loss of dopaminergic neurons in the substantia nigra compacta. Although the mechanisms that trigger the loss of dopaminergic neurons are unclear, mitochondrial dysfunction and inflammation are thought to have key roles1,2. An early-onset form of Parkinson’s disease is associated with mutations in the PINK1 kinase and PRKN ubiquitin ligase genes3. PINK1 and Parkin (encoded by PRKN) are involved in the clearance of damaged mitochondria in cultured cells4, but recent evidence obtained using knockout and knockin mouse models have led to contradictory results regarding the contributions of PINK1 and Parkin to mitophagy in vivo5–8. It has previously been shown that PINK1 and Parkin have a key role in adaptive immunity by repressing presentation of mitochondrial antigens9, which suggests that autoimmune mechanisms participate in the aetiology of Parkinson’s disease. Here we show that intestinal infection with Gram-negative bacteria in Pink1−/− mice engages mitochondrial antigen presentation and autoimmune mechanisms that elicit the establishment of cytotoxic mitochondria-specific CD8+ T cells in the periphery and in the brain. Notably, these mice show a sharp decrease in the density of dopaminergic axonal varicosities in the striatum and are affected by motor impairment that is reversed after treatment with l-DOPA. These data support the idea that PINK1 is a repressor of the immune system, and provide a pathophysiological model in which intestinal infection acts as a triggering event in Parkinson’s disease, which highlights the relevance of the gut–brain axis in the disease10. In mice lacking PINK1, bacterial infection in the intestine results in mitochondrial antigen presentation and generation of CD8+ T cells, and infected mice develop motor impairments, suggesting that PINK1 suppresses autoimmunity.

306 citations

Journal ArticleDOI
TL;DR: Different quality control pathways maintain mitochondria function including mitochondrial DNA replication and repair, fusion-fission dynamics, free radical scavenging, and mitophagy are reviewed and a strategy towards a treatment for these often untreatable disorders is proposed.

250 citations