scispace - formally typeset
Search or ask a question
Author

Eizo Nakamura

Bio: Eizo Nakamura is an academic researcher from Okayama University. The author has contributed to research in topics: Basalt & Metamorphism. The author has an hindex of 54, co-authored 218 publications receiving 8465 citations. Previous affiliations of Eizo Nakamura include University of Toronto & Geological Survey of Pakistan.


Papers
More filters
Journal ArticleDOI
01 Jan 1994-Nature
TL;DR: In this paper, across-arc variations in the concentrations and isotopic compositions of boron and lead observed in lavas from the Izu arc (Japan) have been reported, suggesting that a homogeneous slab fluid contributes to all Izu volcanoes, but that the amount of this fluid decreases continuously with increasing depth of the subducting slab.
Abstract: AT convergent margins, the subducting oceanic slab is thought to dehydrate, producing fluids which metasomatize the overlying mantle wedge where island-arc magma forms. However, the nature and origin of the metasomatizing fluid, its source composition and its relation to the genesis of the chemical characteristics of arc magmas are largely controversial. Across-arc variation in the chemistry of arc lavas provides a useful key to this problem, because it may reflect the changes in the physical conditions of the subducting slab that control mass transfer from slab to mantle wedge as a function of depth. Here we report clear across-arc variations in the concentrations and isotopic compositions of boronand lead observed in lavas from the Izu arc (Japan). Our data suggest that a homogeneous slab fluid contributes to all Izu volcan-oes, but that the amount of this fluid decreases continuously with increasing depth of the subducting slab. Whereas the Izu slab fluid conies primarily from altered oceanic crust, our data for high-Mg andesites from the Setouchi volcanic belt (a nearby fore-arc) indicate a significant involvement of sediment in the fluid source.

347 citations

Journal ArticleDOI
01 Dec 1996-Geology
TL;DR: In this paper, structural, petrological, and geochronological data from the middle Korean peninsula indicate that the Qinling-Dabie-Sulu collisional belt of east-central China crosses the Yellow Sea and extends into the Imjingang belt.
Abstract: Structural, petrological, and geochronological data from the middle Korean peninsula indicate that the Qinling-Dabie-Sulu collisional belt of east-central China crosses the Yellow Sea and extends into the Imjingang belt. The Yeoncheon complex, first identified as the western Imjingang belt, comprises primarily north-dipping metamorphic sequences: (1) the northern Jingok unit, consisting of Barrovian-type metapelites, and (2) the southern Samgot unit, consisting of calc-silicate and amphibolitic rocks. South-vergent structures with reverse-sense shearing are dominant in the Jingok unit, whereas late normal-sense shearing is pervasive in the Samgot unit and the deformed granitoid to the south. These structural patterns are interpreted to correspond to extensional deformation associated with uplift following compression in a collisional belt. Pressure-temperature ( P-T ) estimates from the amphibolites suggest a high-P amphibolite-facies metamorphism (8–13 kbar and 630–790 °C), possibly evolving from eclogite facies conditions along a clockwise P-T path. Sm-Nd and Rb-Sr geochronological data suggest that the amphibolites emplaced in Late Proterozoic time were metamorphosed during Permian-Triassic time.

274 citations

Journal ArticleDOI
TL;DR: Boron contents and boron isotopic compositions were determined for modern and ancient (Permian to Miocene) marine sediments, including pelagic clay, calcareous ooze, siliceous ooz and neritic clay sediments as discussed by the authors.

271 citations

Journal ArticleDOI
TL;DR: In this article, the coprecipitation of trace elements into insoluble fluoride precipitates in mafic and ultramafic silicate rocks was estimated quantitatively, and suggested an effective method of digestion that can suppress completely fluoride precipitation.

255 citations

Journal ArticleDOI
TL;DR: Li isotope was analyzed in island arc volcanics from the Izu arc, Japan, to investigate geochemical processes in subduction zones as discussed by the authors, showing that the amount of subduction component as a fluid added to the source region decreases with depth.

236 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 1989
TL;DR: In this article, trace-element data for mid-ocean ridge basalts and ocean island basalts are used to formulate chemical systematics for oceanic basalts, interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone.
Abstract: Summary Trace-element data for mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) are used to formulate chemical systematics for oceanic basalts. The data suggest that the order of trace-element incompatibility in oceanic basalts is Cs ≈ Rb ≈ (≈ Tl) ≈ Ba(≈ W) > Th > U ≈ Nb = Ta ≈ K > La > Ce ≈ Pb > Pr (≈ Mo) ≈ Sr > P ≈ Nd (> F) > Zr = Hf ≈ Sm > Eu ≈ Sn (≈ Sb) ≈ Ti > Dy ≈ (Li) > Ho = Y > Yb. This rule works in general and suggests that the overall fractionation processes operating during magma generation and evolution are relatively simple, involving no significant change in the environment of formation for MORBs and OIBs. In detail, minor differences in element ratios correlate with the isotopic characteristics of different types of OIB components (HIMU, EM, MORB). These systematics are interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone. Niobium data indicate that the mantle sources of MORB and OIB are not exact complementary reservoirs to the continental crust. Subduction of oceanic crust or separation of refractory eclogite material from the former oceanic crust into the lower mantle appears to be required. The negative europium anomalies observed in some EM-type OIBs and the systematics of their key element ratios suggest the addition of a small amount (⩽1% or less) of subducted sediment to their mantle sources. However, a general lack of a crustal signature in OIBs indicates that sediment recycling has not been an important process in the convecting mantle, at least not in more recent times (⩽2 Ga). Upward migration of silica-undersaturated melts from the low velocity zone can generate an enriched reservoir in the continental and oceanic lithospheric mantle. We propose that the HIMU type (eg St Helena) OIB component can be generated in this way. This enriched mantle can be re-introduced into the convective mantle by thermal erosion of the continental lithosphere and by the recycling of the enriched oceanic lithosphere back into the mantle.

19,221 citations

Journal ArticleDOI
TL;DR: In this article, the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC).
Abstract: We present the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC). Petrological and geochemical features indicate that these mantle-derived composite xenoliths were formed by silicic melt^lherzolite interaction. The Precambrian zircon ages can be classified into three age groups of 2·4^2·5 Ga, 1·6^2·2 Ga and 0·6^1·2 Ga, coinciding with major geological events in the NCC. These Precambrian zircons fall in the field of continental granitoid rocks in plots of U/Yb vs Hf and Y. Their igneous-type REE patterns and metamorphic zircon type CL images indicate that they were not crystallized during melt^peridotite interaction and subsequent high-pressure metamorphism.The 2·5 Ga zircons have positive eHf(t) values (2·9^10·6), whereas the younger Precambrian zircons are dominated by negative eHf(t) values, indicating an ancient continental crustal origin.These observations suggest that the Precambrian zircons were xenocrysts that survived melting of recycled continental crustal rocks and were then injected with silicate melt into the host peridotite. In addition to the Precambrian zircons, igneous zircons of 315 3 Ma (2 ), 80^170 Ma and 48^64 Ma were separated from the garnet/spinel pyroxenite veins; these provide evidence for lower continental crust and oceanic crust recycling-induced multi-episodic melt^peridotite interactions in the central zone of the NCC. The combination of the positive eHf(t) values (2·91^24·6) of the 315 Ma zircons with the rare occurrence of 302^324 Ma subduction-related diorite^granite plutons in the northern margin of the NCC implies that the 315 Ma igneous zircons might record melt^peridotite interactions in the lithospheric mantle induced by Palaeo-Asian oceanic crust subduction. Igneous zircons of age 80^170 Ma generally coexist with the Precambrian metamorphic zircons and have lower Ce/Yb and Th/U ratios, higher U/Yb ratios and greater negative Eu anomalies.The eHf(t) values of these zircons vary greatly from ^47·6 to 24·6.The 170^110 Ma zircons are generally characterized by negative eHf(t) values, whereas the 110^100 Ma zircons have positive eHf(t) values.These observations suggest that melt^peridotite interactions at 80^170 Ma were induced by partial melting of recycled continental crust. The 48^64 Ma igneous zircons are characterized by negligible Ce anomalies, unusually high REE, U and Th contents, and positive eHf(t) values.These features imply that the melt^peridotite interactions at 48^64 Ma could be associated with a depleted mantle-derived carbonate melt or fluid.

2,753 citations

Journal ArticleDOI
01 Jan 2008-Lithos
TL;DR: Two geochemical proxies are particularly important for the identification and classification of oceanic basalts: the Th-Nb proxy for crustal input and hence for demonstrating an oceanic, non-subduction setting; and the Ti-Yb proxy, for melting depth and hence indicating mantle temperature and thickness of the conductive lithosphere as mentioned in this paper.

2,487 citations