scispace - formally typeset
Search or ask a question
Author

Ekaterina V. Pestova

Bio: Ekaterina V. Pestova is an academic researcher from University of Illinois at Chicago. The author has contributed to research in topics: Transformation (genetics) & Promoter. The author has an hindex of 3, co-authored 3 publications receiving 731 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The authors showed that the competence regulation for genetic transformation in Streptococcus pneumoniae depends on a quorum-sensing system, but the only molecular elements of the system whose specific role have been identified are an extracellular peptide signal and an ABC-transporter required for its export.
Abstract: The regulation of competence for genetic transformation in Streptococcus pneumoniae depends on a quorum-sensing system, but the only molecular elements of the system whose specific role have been identified are an extracellular peptide signal and an ABC-transporter required for its export. Here we show that transcription of comC, the gene encoding a predicted 41-residue precursor peptide that is thought to be processed and secreted as the 17-residue mature competence activator, increased approximately 40-fold above its basal level of expression in response to exogenous synthetic activator, consistent with earlier experiments indicating that the activator acts autocatalytically. We also describe two new genes, comD and comE, that encode members of histidine protein kinase and response-regulator families and are linked to comC. Disruption of comE abolished both response to synthetic activator peptide and endogenous competence induction.

438 citations

Journal ArticleDOI
16 Oct 1995-Gene
TL;DR: New drug-resistance cassettes were designed and constructed, using pA as a model for synthetic promoters for the erm and cat genes, and shown to be expressed after insertion in the pneumococcal chromosome, independent of local transcription.

184 citations

Journal ArticleDOI
TL;DR: A random lacZ transcriptional fusion library was constructed in S. pneumoniae by using the insertional lacZ reporter vector pEVP3 to find genes responsible for the production of competence-specific proteins.
Abstract: Although more than a dozen new proteins are produced when Streptococcus pneumoniae cells become competent for genetic transformation, only a few of the corresponding genes have been identified to date. To find genes responsible for the production of competence-specific proteins, a random lacZ transcriptional fusion library was constructed in S. pneumoniae by using the insertional lacZ reporter vector pEVP3. Screening the library for clones with competence-specific beta-galactosidase (beta-Gal) production yielded three insertion mutants with induced beta-Gal levels of about 4, 10, and 40 Miller units. In all three clones, activation of the lacZ reporter correlated with competence and depended on competence-stimulating peptide. Chromosomal loci adjacent to the integrated vector were subcloned from the insertion mutants, and their nucleotide sequences were determined. Genes at two of the loci exhibited strong similarity to parts of Bacillus subtilis com operons. One locus contained open reading frames (ORFs) homologous to the comEA and comEC genes in B. subtilis but lacked a comEB homolog. A second locus contained four ORFs with homology to the B. subtilis comG gene ORFs 1 to 4, but comG gene ORFs 5 to 7 were replaced in S. pneumoniae with an ORF encoding a protein homologous to transport ATP-binding proteins. Genes at all three loci were confirmed to be required for transformation by mutagenesis using pEVP3 for insertion duplications or an erm cassette for gene disruptions.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.
Abstract: ▪ Abstract Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that ba...

4,449 citations

Journal ArticleDOI
TL;DR: This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
Abstract: Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers. This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how c...

3,360 citations

Journal ArticleDOI
TL;DR: The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced the authors' understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis ofBiofilm development.
Abstract: Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.

2,910 citations

Journal ArticleDOI
TL;DR: It is argued that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression.
Abstract: Quorum sensing is a cell-cell communication process in which bacteria use the production and detection of extracellular chemicals called autoinducers to monitor cell population density. Quorum sensing allows bacteria to synchronize the gene expression of the group, and thus act in unison. Here, we review the mechanisms involved in quorum sensing with a focus on the Vibrio harveyi and Vibrio cholerae quorum-sensing systems. We discuss the differences between these two quorum-sensing systems and the differences between them and other paradigmatic bacterial signal transduction systems. We argue that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression. We describe how studies of the V. harveyi and V. cholerae quorum-sensing systems have revealed some of the fundamental mechanisms underpinning the evolution of collective behaviors.

1,448 citations

Journal ArticleDOI
TL;DR: Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration and indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group.
Abstract: Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of L. lactis to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group. [The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.]

1,096 citations