scispace - formally typeset
Search or ask a question
Author

Ekta Walia

Bio: Ekta Walia is an academic researcher from University of Saskatchewan. The author has contributed to research in topics: Zernike polynomials & Feature extraction. The author has an hindex of 21, co-authored 58 publications receiving 1851 citations. Previous affiliations of Ekta Walia include South Asian University & Philips.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.

1,053 citations

Journal ArticleDOI
TL;DR: A computer-aided diagnosis (CAD) system for classifying thyroid nodules in ultrasound images using deep learning approach to extract features from thyroid ultrasound images and achieves excellent classification performance.
Abstract: With many thyroid nodules being incidentally detected, it is important to identify as many malignant nodules as possible while excluding those that are highly likely to be benign from fine needle aspiration (FNA) biopsies or surgeries. This paper presents a computer-aided diagnosis (CAD) system for classifying thyroid nodules in ultrasound images. We use deep learning approach to extract features from thyroid ultrasound images. Ultrasound images are pre-processed to calibrate their scale and remove the artifacts. A pre-trained GoogLeNet model is then fine-tuned using the pre-processed image samples which leads to superior feature extraction. The extracted features of the thyroid ultrasound images are sent to a Cost-sensitive Random Forest classifier to classify the images into “malignant” and “benign” cases. The experimental results show the proposed fine-tuned GoogLeNet model achieves excellent classification performance, attaining 98.29% classification accuracy, 99.10% sensitivity and 93.90% specificity for the images in an open access database (Pedraza et al. 16), while 96.34% classification accuracy, 86% sensitivity and 99% specificity for the images in our local health region database.

274 citations

Journal Article
TL;DR: Analysis of Least Significant Bit (LSB) based Steganography and Discrete Cosine Transform (DCT) basedSteganography is presented, an implementation of both methods and their performance analysis has been done.
Abstract: This paper presents analysis of Least Significant Bit (LSB) based Steganography and Discrete Cosine Transform (DCT) based Steganography. LSB based Steganography embed the text message in least significant bits of digital picture. Least significant bit (LSB) insertion is a common, simple approach to embedding information in a cover file. Unfortunately, it is vulnerable to even a small image manipulation. Converting an image from a format like GIF or BMP, which reconstructs the original message exactly (lossless compression) to a JPEG, which does not (lossy compression), and then back could destroy the information hidden in the LSBs. DCT based Steganography embed the text message in least significant bits of the Discrete Cosine (DC) coefficient of digital picture. When information is hidden inside video, the program hiding the information usually performs the DCT. DCT works by slightly changing each of the images in the video, only to the extent that is not noticeable by the human eye. An implementation of both these methods and their performance analysis has been done in this paper.

131 citations

Journal ArticleDOI
TL;DR: A novel framework for color image retrieval through combination of all the low level features, which gives higher retrieval accuracy is presented, which improves the average retrieval accuracy by approximately 16% and 14% over CDH and ART respectively.

93 citations

Journal ArticleDOI
TL;DR: Detailed experiments demonstrate that the proposed low dimension descriptors LBPC+LBPH+CH, and ULBPC+ULB PH+CH outperform the state-of-the-art color texture descriptors in terms of retrieval accuracy and speed.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Abstract: Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.

5,782 citations

Journal ArticleDOI
TL;DR: A review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.

1,053 citations

Journal ArticleDOI
TL;DR: This article provides a detailed review of the solutions above, summarizing both the technical novelties and empirical results, and compares the benefits and requirements of the surveyed methodologies and provides recommended solutions.

487 citations

Journal ArticleDOI
TL;DR: Several popular deep learning architectures are briefly introduced, and their applications in various specific tasks in US image analysis, such as classification, detection, and segmentation are discussed.

448 citations

Journal ArticleDOI
TL;DR: A narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends, and discusses the many innovations that have advanced in deep learning and how these tools facilitate U-nets.
Abstract: U-net is an image segmentation technique developed primarily for image segmentation tasks. These traits provide U-net with a high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in nearly all major image modalities, from CT scans and MRI to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. Given that U-net’s potential is still increasing, this narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends. We also discuss the many innovations that have advanced in deep learning and discuss how these tools facilitate U-net. In addition, we review the different image modalities and application areas that have been enhanced by U-net.

425 citations