scispace - formally typeset
Search or ask a question
Author

Elahe Talaie

Bio: Elahe Talaie is an academic researcher from University of Waterloo. The author has contributed to research in topics: Transition metal & Electrochemistry. The author has an hindex of 9, co-authored 9 publications receiving 2272 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Review considers some of the current scientific issues underpinning sodium ion batteries, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods.
Abstract: Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.

1,694 citations

Journal ArticleDOI
TL;DR: A combination of operando X-ray diffraction, pair distribution function (PDF) analysis coupled with electrochemical measurements and Mossbauer spectroscopy elucidates the nature of the phase transitions induced by insertion and extraction of sodium ions in P2-Na0.5O2 as discussed by the authors.
Abstract: A combination of operando X-ray diffraction, pair distribution function (PDF) analysis coupled with electrochemical measurements and Mossbauer spectroscopy elucidates the nature of the phase transitions induced by insertion and extraction of sodium ions in P2-Na0.67[NiyMn0.5+yFe0.5−2y]O2 (y = 0, 0.10, 0.15). When phase transitions are avoided, the optimal cathode material – P2-Na0.67Fe0.2Mn0.65Ni0.15O2 – delivers 25% more energy than the unsubstituted material, sustaining high specific energy (350 Wh kg−1) at moderate rates and maintains 80% of the original energy density after 150 cycles – a significant improvement in performance vs. the unsubstituted analogue. The crystal structure of the high voltage phase is solved for the first time by X-ray PDF analysis of P2-Na0.67−zFe0.5Mn0.5O2 (where z ∼ 0.5), revealing that migration of the transition metals – particularly Fe3+ – into tetrahedral sites in the interlayer space occurs at high potential. This results in new short range order between two adjacent layers. Although the transition metal migration is reversible as proven by electrochemical performance, it induces a large disfavourable cell polarization. The deleterious high voltage transition is mitigated by substitution of Fe3+ by Mn4+/Ni2+, giving rise to better cycling performance. Moreover, as demonstrated by 57Fe Mossbauer spectroscopy, the much lower ratio of Fe4+O6 to Fe3+O6 observed systematically across the range of Ni content – compared to the values expected from a purely ionic model – suggests redox activity involves the O-2p orbitals owing to their overlap with the transition metal-3d orbitals.

302 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report excellent cycling performance for P2−Na0.6Li0.2Mn0.8O2, an auspicious cathode material for sodium-ion batteries.
Abstract: We report excellent cycling performance for P2–Na0.6Li0.2Mn0.8O2, an auspicious cathode material for sodium-ion batteries. This material, which contains mainly Mn4+, exhibits a long voltage plateau on the first charge, similar to that of high-capacity lithium and manganese-rich metal oxides. Electrochemical measurements, X-ray diffraction, and elemental analysis of the cycled electrodes suggest an activation process that includes the extraction of lithium from the material. The “activated” material delivers a stable, high specific capacity up to ∼190 mAh/g after 100 cycles in the voltage window between 4.6–2.0 V versus Na/Na+. DFT calculations locate the energy states of oxygen atoms near the Fermi level, suggesting the possible contribution of oxide ions to the redox process. The addition of Li to the lattice improves structural stability compared to many previously reported sodiated transition-metal oxide electrode materials, by inhibiting the detrimental structural transformation ubiquitously observed ...

178 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the insertion of carbonate ions in the vacancy-rich layered structure of P2-Na0.67[Mn0.5]O2 on exposure to CO2 and moisture, concomitant with oxidation of Mn(III) to Mn(IV).
Abstract: Batteries based on sodium layered transition metal oxides are a promising alternative to current state-of-the-art lithium-ion systems for large-scale energy storage, resulting in recent intensive efforts to develop high-energy density, low cost, stable cathode materials. Some of the most promising degrade on exposure to ambient atmosphere; however, the process is not understood. Here, using neutron/X-ray diffraction coupled with mass spectroscopy and thermal analysis, we reveal the nature of the reactivity. We demonstrate the unprecedented insertion of carbonate ions in the vacancy-rich layered structure of P2-Na0.67[Mn0.5Fe0.5]O2 on exposure to CO2 and moisture, concomitant with oxidation of Mn(III) to Mn(IV). The material exhibits much higher charge/discharge polarization and lower capacity than rigorously air-protected P2-Na0.67[Mn0.5Fe0.5]O2; a detailed study by online electrochemistry mass spectroscopy reveals that the inserted carbonate ions decompose during electrochemical charging, accounting for ...

150 citations

Journal ArticleDOI
TL;DR: An overview of the procedures and methods to prepare and evaluate materials for electrochemical cells in battery research in this article, including cell fabrication, two-and three-electrode cell studies, and methodology for evaluating diffusion coefficients and impedance measurements.
Abstract: We present an overview of the procedures and methods to prepare and evaluate materials for electrochemical cells in battery research in our laboratory, including cell fabrication, two- and three-electrode cell studies, and methodology for evaluating diffusion coefficients and impedance measurements. Informative characterization techniques employed to assess new materials for batteries are also described, including operando XRD, pair-distribution function analysis, X-ray photoelectron spectroscopy, and operando X-ray absorption spectroscopy. Examples of insightful information that each technique has provided in the research areas of Li-S, Na-ion, and Mg batteries are presented along with excellent references for detailed descriptions of the theory, experimental procedures, and various designs, as well as methods for data processing and analysis.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively.
Abstract: Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed.

1,316 citations

Journal ArticleDOI
TL;DR: A high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis.
Abstract: Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

1,162 citations

Journal ArticleDOI
TL;DR: The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.
Abstract: A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.

1,017 citations