scispace - formally typeset
Search or ask a question
Author

Eleftheria Maratos-Flier

Other affiliations: Joslin Diabetes Center, Brigham and Women's Hospital, Novartis  ...read more
Bio: Eleftheria Maratos-Flier is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Leptin & FGF21. The author has an hindex of 50, co-authored 147 publications receiving 25805 citations. Previous affiliations of Eleftheria Maratos-Flier include Joslin Diabetes Center & Brigham and Women's Hospital.


Papers
More filters
Journal ArticleDOI
18 Jul 1996-Nature
TL;DR: It is proposed that regulation of the neuroendocrine system during starvation could be the main physiological role of leptin, and preventing the starvation-induced fall in leptin with exogenous leptin substantially blunts the changes in gonadal, adrenal and thyroid axes in male mice, and prevents the starve-induced delay in ovulation in female mice.
Abstract: A total deficiency in or resistance to the protein leptin causes severe obesity. As leptin levels rise with increasing adiposity in rodents and man, it is proposed to act as a negative feedback 'adipostatic signal' to brain centres controlling energy homeostasis, limiting obesity in times of nutritional abundance. Starvation is also a threat to homeostasis that triggers adaptive responses, but whether leptin plays a role in the physiology of starvation is unknown. Leptin concentration falls during starvation and totally leptin-deficient ob/ob mice have neuroendocrine abnormalities similar to those of starvation, suggesting that this may be the case. Here we show that preventing the starvation-induced fall in leptin with exogenous leptin substantially blunts the changes in gonadal, adrenal and thyroid axes in male mice, and prevents the starvation-induced delay in ovulation in female mice. In contrast, leptin repletion during this period of starvation has little or no effect on body weight, blood glucose or ketones. We propose that regulation of the neuroendocrine system during starvation could be the main physiological role of leptin.

3,017 citations

Journal ArticleDOI
TL;DR: Induction of FGF21 in liver is required for the normal activation of hepatic lipid oxidation, triglyceride clearance, and ketogenesis induced by KD, and a physiological role for this hepatic hormone is identified.

1,363 citations

Journal ArticleDOI
21 Mar 1996-Nature
TL;DR: It is shown that one mRNA that is overexpressed in the hypothalamus of ob/ob mice encodes the neuropeptide melanin-concentrating hormone (MCH), which suggests that MCH participates in the leptin regulation of body weight.
Abstract: The hypothalamus plays a central role in the integrated regulation of energy homeostasis and body weight, and a number of hypothalamic neuropeptides, such as neuropeptide Y (ref. 1), galanin, CRH (ref. 3) and GLP-1 (ref. 4), have been implicated in the mediation of these effects. To discover new hypothalmic peptides involved in the regulation of body weight, we used differential display polymerase chain reaction to identify messenger RNAs that are differentially expressed in the hypothalamus of ob/+ compared with ob/ob C57B1/6J mice. We show here that one mRNA that is overexpressed in the hypothalamus of ob/ob mice encodes the neuropeptide melanin-concentrating hormone (MCH). Fasting further increased expression of MCH mRNA in both normal and obese animals. Neurons containing MCH are located in the zona incerta and in the lateral hypothalamus. These areas are involved in regulation of ingestive behaviour, but the role of MCH in mammalian physiology is unknown. To determine whether MCH is involved in the regulation of feeding, we injected MCH into the lateral ventricles of rats and found that their food consumption increased. These findings suggest that MCH participates in the hypothalamic regulation of body weight.

1,325 citations

Journal ArticleDOI
TL;DR: It is shown here that fibroblast growth factor 21 (FGF21) plays a physiologic role in this thermogenic recruitment of WATs and acts to activate and expand the thermogenic machinery in vivo to provide a robust defense against hypothermia.
Abstract: Certain white adipose tissue (WAT) depots are readily able to convert to a "brown-like" state with prolonged cold exposure or exposure to β-adrenergic compounds. This process is characterized by the appearance of pockets of uncoupling protein 1 (UCP1)-positive, multilocular adipocytes and serves to increase the thermogenic capacity of the organism. We show here that fibroblast growth factor 21 (FGF21) plays a physiologic role in this thermogenic recruitment of WATs. In fact, mice deficient in FGF21 display an impaired ability to adapt to chronic cold exposure, with diminished browning of WAT. Adipose-derived FGF21 acts in an autocrine/paracrine manner to increase expression of UCP1 and other thermogenic genes in fat tissues. FGF21 regulates this process, at least in part, by enhancing adipose tissue PGC-1α protein levels independently of mRNA expression. We conclude that FGF21 acts to activate and expand the thermogenic machinery in vivo to provide a robust defense against hypothermia.

1,263 citations

Journal ArticleDOI
17 Dec 1998-Nature
TL;DR: MCH is a critical regulator of feeding and energy balance which acts downstream of leptin and the melanocortin system, and that deletion of a gene encoding a single orexigenic peptide can result in leanness.
Abstract: Feeding is influenced by hypothalamic neuropeptides that promote (orexigenic peptides) or inhibit feeding1. Of these, neuropeptide Y (NPY) in the arcuate nucleus2 and melanin-concentrating hormone (MCH)3 and orexins/hypocretins4,5 in the lateral hypothalamus have received attention because their expression is increased during fasting and because they promote feeding when administered centrally. Surprisingly, absence of the orexigenic neuropeptide NPY fails to alter feeding or body weight in normal mice6. As deficiency of a single component of the pathway that limits food intake (such as leptin or receptors for melanocortin-4)7,8 causes obesity, it has been suggested that orexigenic signals are more redundant than those limiting food intake7,8. To define further the physiological role of MCH and to test the redundancy of orexigenic signals, we generated mice carrying a targeted deletion of the MCH gene. MCH-deficient mice have reduced body weight and leanness due to hypophagia (reduced feeding) and an inappropriately increased metabolic rate, despite their reduced amounts of both leptin and arcuate nucleus pro-opiomelanocortin messenger RNA. Our results show that MCH is a critical regulator of feeding and energy balance which acts downstream of leptin and the melanocortin system, and that deletion of a gene encoding a single orexigenic peptide can result in leanness.

1,174 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
06 Apr 2000-Nature
TL;DR: A model is described that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.
Abstract: New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.

6,178 citations

Journal ArticleDOI
22 Oct 1998-Nature
TL;DR: The role of leptin in the control of body weight and its relevance to the pathogenesis of obesity are reviewed.
Abstract: The assimilation, storage and use of energy from nutrients constitute a homeostatic system that is essential for life In vertebrates, the ability to store sufficient quantities of energy-dense triglyceride in adipose tissue allows survival during the frequent periods of food deprivation encountered during evolution However, the presence of excess adipose tissue can be maladaptive A complex physiological system has evolved to regulate fuel stores and energy balance at an optimum level Leptin, a hormone secreted by adipose tissue, and its receptor are integral components of this system Leptin also signals nutritional status to several other physiological systems and modulates their function Here we review the role of leptin in the control of body weight and its relevance to the pathogenesis of obesity

5,335 citations

Journal ArticleDOI
20 Feb 1998-Cell
TL;DR: Two novel neuropeptides are identified, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors in the hypothalamus of rats.

5,162 citations