scispace - formally typeset
Search or ask a question
Author

Elena Conesa-Ros

Bio: Elena Conesa-Ros is an academic researcher from University of Murcia. The author has contributed to research in topics: Concurrent validity & Heat illness. The author has an hindex of 4, co-authored 9 publications receiving 60 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Stryd device was found as the most repeatable technology for all environments and conditions and the PolarV, GarminRP and RunScribe technologies maintain a certain relationship with VO2, but their low repeatability questions their suitability.
Abstract: Training prescription in running activities have benefited from power output (PW) data obtained by new technologies. Nevertheless, to date, the suitability of PW data provided by these tools is sti...

31 citations

Journal ArticleDOI
TL;DR: Results reveal that wind and skin sweat invalidate the use of skin infrared thermometry to estimate core temperature (Tc) during exercise in the heat, and recommended using tympanic Braun®, and non-contact skin infrared Medisana® or Visiofocus® in wind-restricted and no sweat conditions to estimate Tc during exercise during the heat.
Abstract: This experiment investigates the validity of six thermometers with different measuring sensors, operation and site of application, to estimate core temperature (Tc) in comparison to an ingestible thermometric sensor based on quartz crystal technology. Measurements were obtained before, during and after exercise in the heat, controlling the presence of air-cooling and skin sweating. Twelve well-trained men swallowed the ingestible thermometer 6 h before the trial. After pre-exercise resting measurements at 20 °C, subjects entered a heat chamber held at 40 °C. Exercise in the heat consisted of 60 min of pedalling on cycle ergometer at 90% of the individually determined first ventilatory threshold. Results reveal that wind and skin sweat invalidate the use of skin infrared thermometry to estimate Tc during exercise in the heat. However, better Tc estimations were obtained in wind-restricted situations. We detected important differences between same-technology devices but different models and brands. In conclusion, there are important limitations to assess Tc accurately using non-invasive thermometers during and after exercise in the heat. Because some devices showed better validity than others did, we recommended using tympanic Braun®, and non-contact skin infrared Medisana® or Visiofocus® in wind-restricted and no sweat conditions to estimate Tc during exercise in the heat.

26 citations

Journal Article
TL;DR: The complete or partial presence of the sticking region during the concentric action of the lift seems to underlie the differences in the 1RM strength, load-velocity profiles and the contribution of the propulsive phase in the BP exercise at different ROMs.
Abstract: This study aimed to analyze the influence of range of motion (ROM) on main biomechanical parameters of the bench press (BP) exercise: i) load-velocity relationship by mean (MV) and mean propulsive velocity (MPV), ii) one-repetition maximum strength (1RM); iii) contribution of the propulsive and braking phases, and iv) presence of the sticking region key parameters (first peak barbell velocity: Vmax1, minimum velocity: Vmin and second peak barbell velocity: Vmax2). Forty-two strength-trained males performed a progressive loading test, starting at 20 kg and gradually increasing the load in 10 kg until MPV ≤ 0.50 m·s-1 and 5 down to 2.5 kg until 1RM, in three different ROMs: full ROM (BPFULL), two-thirds (BP2/3) and one-third (BP1/3). While significant differences were detected in the velocity attained against loads between 30-95% 1RM (BPFULL, BP2/3 and BP1/3, p < 0.05), both MV and MPV showed a very close relationship to %1RM for the three BP variations (R2 = 0.935-0.966). The contribution of the braking phase decreased progressively until it completely disappeared at the 80%, 95% and 100% 1RM loads in BP1/3, BP2/3 and BPFULL, respectively. The 1RM increased as the ROM decreased (BPFULL < BP2/3 < BP1/3, p < 0.05). Despite the three biomechanical parameters that define the sticking region on the velocity-time curves were only observed in BPFULL variation, in 54.5% of the cases the subjects started their BP2/3 displacement before reaching the position at which the Vmin occurs in their BPFULL exercise. The complete or partial presence of the sticking region during the concentric action of the lift seems to underlie the differences in the 1RM strength, load-velocity profiles and the contribution of the propulsive phase in the BP exercise at different ROMs.

16 citations

Journal ArticleDOI
TL;DR: The closest agreement of the Stryd and PolarV technologies with the TPW1 and TPW2 models suggest these tools as the most sensitive, among those analyzed, for PW measurement when changing environments and running conditions.

12 citations

Journal ArticleDOI
TL;DR: The Bland-Altman analyses revealed that all high speed cameras produced substantial overestimation of barbell MV against high loads >60% 1RM, but mainly against low loads.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a narrative review summarizes the up-to-date evidence on post-COVID-19 syndrome to contribute to a better knowledge of the disease and explains how regular exercise may improve many of these symptoms and could reduce the long-term effects of COVID19.
Abstract: The coronavirus disease (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, is leading to unknown and unusual health conditions that are challenging to manage. Post-COVID-19 syndrome is one of those challenges, having become increasingly common as the pandemic evolves. The latest estimates suggest that 10 to 20% of the SARS-CoV-2 patients who undergo an acute symptomatic phase are experiencing effects of the disease beyond 12 weeks after diagnosis. Although research is beginning to examine this new condition, there are still serious concerns about the diagnostic identification, which limits the best therapeutic approach. Exercise programs and physical activity levels are well-known modulators of the clinical manifestations and prognosis in many chronic diseases. This narrative review summarizes the up-to-date evidence on post-COVID-19 syndrome to contribute to a better knowledge of the disease and explains how regular exercise may improve many of these symptoms and could reduce the long-term effects of COVID-19.

124 citations

Journal ArticleDOI
TL;DR: This study aimed to analyze the agreement between five bar velocity monitoring devices, currently used in resistance training, to determine the most reliable device based on reproducibility (between-device agreement for a given trial) and repeatability ( between-trial variation for each device)
Abstract: This study aimed to analyze the agreement between five bar velocity monitoring devices, currently used in resistance training, to determine the most reliable device based on reproducibility (between-device agreement for a given trial) and repeatability (between-trial variation for each device). Seventeen resistance-trained men performed duplicate trials against seven increasing loads (20-30-40-50-60-70-80 kg) while obtaining mean, mean propulsive and peak velocity outcomes in the bench press, full squat and prone bench pull exercises. Measurements were simultaneously registered by two linear velocity transducers (LVT), two linear position transducers (LPT), two optoelectronic camera-based systems (OEC), two smartphone video-based systems (VBS) and one accelerometer (ACC). A comprehensive set of statistics for assessing reliability was used. Magnitude of errors was reported both in absolute (m s−1) and relative terms (%1RM), and included the smallest detectable change (SDC) and maximum errors (MaxError). LVT was the most reliable and sensitive device (SDC 0.02–0.06 m s−1, MaxError 3.4–7.1% 1RM) and the preferred reference to compare with other technologies. OEC and LPT were the second-best alternatives (SDC 0.06–0.11 m s−1), always considering the particular margins of error for each exercise and velocity outcome. ACC and VBS are not recommended given their substantial errors and uncertainty of the measurements (SDC > 0.13 m s−1).

95 citations

Journal ArticleDOI
10 Jun 2020-PLOS ONE
TL;DR: T-Force stands as the preferable option to assess barbell velocity and to identify technical errors of measurement for emerging monitoring technologies, while the Speed4Lifts and STT are fine alternatives to T-Force for measuring velocity against high-medium loads.
Abstract: This study investigated the inter- and intra-device agreement of four new devices marketed for barbell velocity measurement. Mean, mean propulsive and peak velocity outcomes were obtained for bench press and full squat exercises along the whole load-velocity spectrum (from light to heavy loads). Measurements were simultaneously registered by two linear velocity transducers T-Force, two linear position transducers Speed4Lifts, two smartphone video-based systems My Lift, and one 3D motion analysis system STT. Calculations included infraclass correlation coefficient (ICC), Bland-Altman Limits of Agreement (LoA), standard error of measurement (SEM), smallest detectable change (SDC) and maximum errors (MaxError). Results were reported in absolute (m/s) and relative terms (%1RM). Three velocity segments were differentiated according to the velocity-load relationships for each exercise: heavy (≥ 80% 1RM), medium (50% 0.990 and SDC < 0.07 m/s (~5% 1RM). The T-Force device shown the best intra-device agreement (SDC = 0.01-0.02 m/s, LoA <0.01m/s, MaxError = 1.3-2.2%1RM). The Speed4Lifts and STT were found as highly reliable, especially against lifting velocities ≤1.0 m/s (Speed4Lifts, SDC = 0.01-0.05 m/s; STT, SDC = 0.02-0.04 m/s), whereas the My Lift app showed the worst results with errors well above the acceptable levels (SDC = 0.26-0.34 m/s, MaxError = 18.9-24.8%1RM). T-Force stands as the preferable option to assess barbell velocity and to identify technical errors of measurement for emerging monitoring technologies. Both the Speed4Lifts and STT are fine alternatives to T-Force for measuring velocity against high-medium loads (velocities ≤ 1.0 m/s), while the excessive errors of the newly updated My Lift app advise against the use of this tool for velocity-based resistance training.

47 citations

Journal ArticleDOI
TL;DR: A systematic review of studies that investigate the validity and/or reliability of commercially available devices that quantify kinetic and kinematic outputs during resistance training was conducted by as discussed by the authors, where a total of 31 studies met the inclusion criteria.
Abstract: Monitoring resistance training has a range of unique difficulties due to differences in physical characteristics and capacity between athletes, and the indoor environment in which it often occurs. Traditionally, methods such as volume load have been used, but these have inherent flaws. In recent times, numerous portable and affordable devices have been made available that purport to accurately and reliably measure kinetic and kinematic outputs, potentially offering practitioners a means of measuring resistance training loads with confidence. However, a thorough and systematic review of the literature describing the reliability and validity of these devices has yet to be undertaken, which may lead to uncertainty from practitioners on the utility of these devices. A systematic review of studies that investigate the validity and/or reliability of commercially available devices that quantify kinetic and kinematic outputs during resistance training. Following PRISMA guidelines, a systematic search of SPORTDiscus, Web of Science, and Medline was performed; studies included were (1) original research investigations; (2) full-text articles written in English; (3) published in a peer-reviewed academic journal; and (4) assessed the validity and/or reliability of commercially available portable devices that quantify resistance training exercises. A total of 129 studies were retrieved, of which 47 were duplicates. The titles and abstracts of 82 studies were screened and the full text of 40 manuscripts were assessed. A total of 31 studies met the inclusion criteria. Additional 13 studies, identified via reference list assessment, were included. Therefore, a total of 44 studies were included in this review. Most of the studies within this review did not utilise a gold-standard criterion measure when assessing validity. This has likely led to under or overreporting of error for certain devices. Furthermore, studies that have quantified intra-device reliability have often failed to distinguish between technological and biological variability which has likely altered the true precision of each device. However, it appears linear transducers which have greater accuracy and reliability compared to other forms of device. Future research should endeavour to utilise gold-standard criterion measures across a broader range of exercises (including weightlifting movements) and relative loads.

41 citations

Journal ArticleDOI
TL;DR: The collected evidence supports the premise of in-ear sensors as an innovative and unobtrusive way for physiological monitoring during daily-life and physical activity, but further research and technological advancement are necessary to ameliorate measurement accuracy especially in more challenging scenarios.
Abstract: Technological advancements are opening the possibility of prolonged monitoring of physiological parameters under daily-life conditions, with potential applications in sport science and medicine, and in extreme environments. Among emerging wearable technologies, in-ear devices or hearables possess technical advantages for long-term monitoring, such as non-invasivity, unobtrusivity, good fixing, and reduced motion artifacts, as well as physiological advantages related to the proximity of the ear to the body trunk and the shared vasculature between the ear and the brain. The present scoping review was aimed at identifying and synthesizing the available evidence on the use and performance of in-ear monitoring of physiological parameters, with focus on applications in sport science, sport medicine, occupational medicine, and extreme environment settings. Pubmed, Scopus, and Web of Science electronic databases were systematically searched to identify studies conducted in the last 10 years and addressing the measurement of three main physiological parameters (temperature, heart rate, and oxygen saturation) in healthy subjects. Thirty-nine studies were identified, 24 performing temperature measurement, 12 studies on heart/pulse rate, and three studies on oxygen saturation. The collected evidence supports the premise of in-ear sensors as an innovative and unobtrusive way for physiological monitoring during daily-life and physical activity, but further research and technological advancement are necessary to ameliorate measurement accuracy especially in more challenging scenarios.

22 citations