scispace - formally typeset
Search or ask a question
Author

Elena Kolodzeiski

Bio: Elena Kolodzeiski is an academic researcher from University of Münster. The author has contributed to research in topics: Scanning tunneling microscope & Molecular machine. The author has an hindex of 5, co-authored 10 publications receiving 96 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study highlights how well-defined structural modifications of NHCs allow for controlling the local binding motif on surfaces, which is important to design designated catalytic sites at interfaces.
Abstract: Tuning the binding mode of N-heterocyclic carbenes on metal surfaces is crucial for the development of new functional materials. To understand the impact of alkyl side groups on the formation of NHC species at the Au(111) surface, we combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. We reveal two significantly different binding modes depending on the alkyl chain length. In the case of a short alkyl substituent, an up-standing configuration with one Au adatom is preferred, whereas the longer alkyl groups result exclusively in NHC-Au-NHC complexes lying flat on the surface. Our study highlights how well-defined structural modifications of NHCs allow for controlling the local binding motif on surfaces, which is important to design designated catalytic sites at interfaces.

74 citations

Journal ArticleDOI
TL;DR: A combination of scanning tunneling microscopy, X‐ray photoelectron spectroscopy, and density functional theory (DFT) calculations highlights how CAACs bind to the surface, which is of tremendous importance to gain an understanding of heterogeneous catalysts bearingCAACs as ligands.
Abstract: The structural properties and binding motif of a strongly σ-electron-donating N-heterocyclic carbene have been investigated on different transition-metal surfaces. The examined cyclic (alkyl)(amino)carbene (CAAC) was found to be mobile on surfaces, and molecular islands with short-range order could be found at high coverage. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations highlights how CAACs bind to the surface, which is of tremendous importance to gain an understanding of heterogeneous catalysts bearing CAACs as ligands.

29 citations

Journal ArticleDOI
TL;DR: This study highlights the unique potential of pho‐MOFs to tailor molecular interaction by light by performing atomistic simulations that revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene‐functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated.
Abstract: Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal-organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host-guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host-guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.

16 citations

Journal ArticleDOI
TL;DR: In this paper, an extension of the tunneling theory for scanning tunneling microcopy (STM) to include different types of vibrational-electronic couplings responsible for inelastic contributions to the tunnel current in the strong-coupling limit is presented.
Abstract: We present an extension of the tunneling theory for scanning tunneling microcopy (STM) to include different types of vibrational-electronic couplings responsible for inelastic contributions to the tunnel current in the strong-coupling limit. It allows for a better understanding of more complex scanning tunneling spectra of molecules on a metallic substrate in separating elastic and inelastic contributions. The starting point is the exact solution of the spectral functions for the electronic active local orbitals in the absence of the STM tip. This includes electron-phonon coupling in the coupled system comprising the molecule and the substrate to arbitrary order including the anti-adiabatic strong coupling regime as well as the Kondo effect on a free electron spin of the molecule. The tunneling current is derived in second order of the tunneling matrix element which is expanded in powers of the relevant vibrational displacements. We use the results of an ab-initio calculation for the single-particle electronic properties as an adapted material-specific input for a numerical renormalization group approach for accurately determining the electronic properties of a NTCDA molecule on Ag(111) as a challenging sample system for our theory. Our analysis shows that the mismatch between the ab-initio many-body calculation of the tunnel current in the absence of any electron-phonon coupling to the experiment scanning tunneling spectra can be resolved by including two mechanisms: (i) a strong unconventional Holstein term on the local substrate orbital leads to reduction of the Kondo temperature and (ii) a different electron-vibrational coupling to the tunneling matrix element is responsible for inelastic steps in the $dI/dV$ curve at finite frequencies.

11 citations


Cited by
More filters
01 Feb 2012
TL;DR: In this paper, the authors show that the inclusion of the many-body collective response of the substrate electrons inside the inorganic bulk enables them to reliably predict the HIOS geometries and energies.
Abstract: The electronic properties and the function of hybrid inorganic-organic systems (HIOS) are intimately linked to their interface geometry. Here we show that the inclusion of the many-body collective response of the substrate electrons inside the inorganic bulk enables us to reliably predict the HIOS geometries and energies. This is achieved by the combination of dispersion-corrected density-functional theory (the DFTþ van der Waals approach) [Phys. Rev. Lett. 102, 073005 (2009)], with the Lifshitz-Zaremba-Kohn theory for the nonlocal Coulomb screening within the bulk. Our method yields geometries in remarkable agreement (� 0:1 � A) with normal incidence x-ray standing wave measurements for the 3, 4, 9, 10-perylene-tetracarboxylic acid dianhydride (C24O6H8, PTCDA) molecule on Cu(111), Ag(111), and Au(111) surfaces. Similarly accurate results are obtained for xenon and benzene adsorbed on metal surfaces.

412 citations

Journal ArticleDOI
TL;DR: This review provides an in-depth look at recent advances in the use of NHCs for the development of functional materials.
Abstract: N-Heterocyclic carbenes (NHCs) have become one of the most widely studied class of ligands in molecular chemistry and have found applications in fields as varied as catalysis, the stabilization of reactive molecular fragments, and biochemistry. More recently, NHCs have found applications in materials chemistry and have allowed for the functionalization of surfaces, polymers, nanoparticles, and discrete, well-defined clusters. In this review, we provide an in-depth look at recent advances in the use of NHCs for the development of functional materials.

335 citations

Journal ArticleDOI
TL;DR: The studies herein presented show that the basic principles in molecular catalysis and organometallic chemistry can be effectively used to design new efficient and selective heterogeneous catalysts for CO2 reduction.
Abstract: The electrochemical reduction of carbon dioxide (CO2) powered by renewable energy is an attractive sustainable approach to mitigate CO2 emissions and to produce fuels or value-added chemicals. In order to tackle the challenges related to selectivity, activity, overpotential and durability, transition metal-based catalysts have been widely investigated in the last decades. In an effort to bridge the gap between the fields of homogeneous and heterogeneous catalysis, this review aims to survey the main strategies explored for the rational design of a wide variety of different metal catalysts, ranging from molecular systems to single-atom and nanostructured catalysts. Transition metal complexes containing heme and non-heme ligands have been selected to discuss the recent advances in the understanding of the structure–function relationship in molecular homogeneous catalysis as well as to summarize the main approaches proposed for the heterogenization or confinement of molecular catalysts on conductive surfaces. The main strategies to minimize catalyst cost are also presented, leading to atomically dispersed molecular-like M–Nx moieties embedded on 2D conducting materials. The superior performances of single-atom catalysts (SACs) and the structural similarity with their molecular analogs, suggest that transition metal catalysts containing well-defined sites may be intrinsically more active and selective towards CO2 conversion than the bulk heterogeneous materials. Finally, design approaches for metal nanoparticles (NPs) based on size, shape, and support tuning are summarized and compared to novel strategies based on the interaction with surface-bonded organic molecules. The studies herein presented show that the basic principles in molecular catalysis and organometallic chemistry can be effectively used to design new efficient and selective heterogeneous catalysts for CO2 reduction.

229 citations

01 Mar 2014
TL;DR: This work identifies a recently experimentally made 2D organometallic framework, consisting of π-conjugated nickel-bis-dithiolene with a chemical formula Ni3C12S12, which exhibits nontrivial topological states in both a Dirac band and a flat band, therefore confirming the existence of OTI.
Abstract: Topological insulators (TI) are a class of materials exhibiting unique quantum transport properties with potential applications in spintronics and quantum computing. To date, all of the experimentally confirmed TIs are inorganic materials. Recent theories predicted the possible existence of organic TIs (OTI) in two-dimensional (2D) organometallic frameworks. However, those theoretically proposed structures do not naturally exist and remain to be made in experiments. Here, we identify a recently experimentally made 2D organometallic framework, consisting of π-conjugated nickel-bis-dithiolene with a chemical formula Ni3C12S12, which exhibits nontrivial topological states in both a Dirac band and a flat band, therefore confirming the existence of OTI.

228 citations

Journal Article
TL;DR: In this paper, the magnetic anisotropy has been shown to play a decisive role in the physics of Kondo screening, and it was shown that a Kondo resonance emerges for large-spin atoms only when the magnetic aisotropic effect creates degenerate ground-state levels that are connected by the spin flip of a screening electron.
Abstract: Localized magnetic moments on surfaces can be screened through the Kondo effect by forming a correlated system with the surrounding conduction electrons. Measurements now show that the orientation of the magnetic moment’s spin relative to the surface has a decisive role in the physics of Kondo screening. In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host1. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin2. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment’s energy on the orientation of the spin relative to its surrounding atomic environment3,4. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.

200 citations