scispace - formally typeset
Search or ask a question
Author

Elena V. Shevchenko

Bio: Elena V. Shevchenko is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Nanocrystal & Nanoparticle. The author has an hindex of 47, co-authored 122 publications receiving 17083 citations. Previous affiliations of Elena V. Shevchenko include University of Chicago & Columbia University.


Papers
More filters
Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
05 Jan 2006-Nature
TL;DR: It is demonstrated that electrical charges on sterically stabilized nanoparticles determine B NSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.
Abstract: The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice is a promising way of synthesizing a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. In theory only a few stable binary superlattice structures can assemble from hard spheres, potentially limiting this approach. But all is not lost because at the nanometre scale there are additional forces (electrostatic, van der Waals and dipolar) that can stabilize binary nanoparticulate structures. Shevchenko et al. now report the synthesis of a dozen novel structures from various combinations of metal, semiconductor, magnetic and dielectric nanoparticles. This demonstrates the potential of self-assembly in designing families of novel materials and metamaterials with programmable physical and chemical properties. Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures—that is, ‘bottom up’ assembly—is a theme that runs through chemistry, biology and material science. Bacteria1, macromolecules2 and nanoparticles3 can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL)3,4,5,6,7 can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation3,8,9, and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres10,11. Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.

1,981 citations

Journal ArticleDOI
TL;DR: In this article, photostable thiol-capped CdTe nanocrystals were synthesized using post-preparative size-selective precipitation and selective photochemical etching.
Abstract: New approaches to synthesize photostable thiol-capped CdTe nanocrystals are reported. Post-preparative size-selective precipitation and selective photochemical etching have been developed as methods providing an increase of photoluminescence quantum efficiency of the nanocrystals of up to 40%. Some advantages of thiol-capping in comparison to conventional organometallic syntheses of quantum dots are discussed.

1,500 citations

Journal ArticleDOI
TL;DR: In this paper, seeded growth of nanocrystals offers a convenient way to design nanoheterostructures with complex shapes and morphologies by changing the crystalline structure of the seed.
Abstract: We have demonstrated that seeded growth of nanocrystals offers a convenient way to design nanoheterostructures with complex shapes and morphologies by changing the crystalline structure of the seed. By using CdSe nanocrystals with wurtzite and zinc blende structure as seeds for growth of CdS nanorods, we synthesized CdSe/CdS heterostructure nanorods and nanotetrapods, respectively. Both of these structures showed excellent luminescent properties, combining high photoluminescence efficiency (∼80 and ∼50% for nanorods and nanotetrapods, correspondingly), giant extinction coefficients (∼2 × 107 and ∼1.5 × 108 M-1 cm-1 at 350 nm for nanorods and nanotetrapods, correspondingly), and efficient energy transfer from the CdS arms into the emitting CdSe core.

726 citations

Journal ArticleDOI
29 Jan 2005-Langmuir
TL;DR: This study investigates colloidally prepared, highly monodisperse CoPt3 nanoparticles by transmission electron microscopy, small-angleX-ray scattering (SAXS), and powder X-ray diffraction (XRD), and examines to which extent agreement is obtained by the different techniques when applied to small nanocrystals in the size range below 10 nm.
Abstract: One of the most fundamental tasks in nanoscience is the accurate determination of particle sizes. Various methods have been developed to elucidate the mean particle diameter and the standard deviation for an ensemble of nanocrystals. However, good agreement between the results from different methods is not always encountered in the literature. In this study, we investigate colloidally prepared, highly monodisperse CoPt3 nanoparticles by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and powder X-ray diffraction (XRD). The results are compared in order to examine to which extent agreement is obtained by the different techniques when applied to small nanocrystals in the size range below 10 nm. In particular, the applicability of the simple Scherrer formula for size determination from the broadening of XRD reflections is checked. When the different techniques are correctly applied, the results from all methods are in good agreement.

644 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
28 Jan 2005-Science
TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Abstract: Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have farreaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

7,499 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Abstract: Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiativ...

6,170 citations

Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations