scispace - formally typeset
Search or ask a question
Author

Eleonora Piscitelli

Bio: Eleonora Piscitelli is an academic researcher from National Research Council. The author has contributed to research in topics: Stem cell & Cancer stem cell. The author has an hindex of 6, co-authored 9 publications receiving 125 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A canine model system to isolate and characterize normal and CSCs from dog mammary gland is generated and it is shown that cells obtained from spheres that display self-renewing properties, have multi-lineage differentiation potential, could generate complex branched tubular structures in vitro and form tumours in NOD/SCID mice.
Abstract: Recent data suggest that mammary carcinogenesis may be driven by cancer stem cells (CSCs) derived from mutated adult stem cells, which have acquired aberrant cell self-renewal or by progenitor cells that have acquired the capacity for cell self-renewal. Spontaneous mammary cancers in cats and dogs are important models for the understanding of human breast cancer and may represent alternative species model systems that can significantly contribute to the study of human oncogenesis. With the goal of identifying markers for isolating human breast CSCs, we have generated a canine model system to isolate and characterize normal and CSCs from dog mammary gland. Insight into the hierarchical organization of canine tumours may contribute to the development of universal concepts in oncogenesis by CSCs. Cells with stem cell properties were isolated from normal and tumoural canine breast tissue and propagated as mammospheres and tumourspheres in long-term non-adherent culture conditions. We showed that cells obtained from spheres that display self-renewing properties, have multi-lineage differentiation potential, could generate complex branched tubular structures in vitro and form tumours in NOD/SCID mice. We analysed these cells for the expression of human stem and CSC markers and are currently investigating the tumour-initiating properties of these cells and the hierarchical organization of normal and neoplastic canine mammary tissue.

40 citations

Journal ArticleDOI
TL;DR: The property of sphere formation is utilized to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue and it is shown that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ.
Abstract: Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.

25 citations

Journal ArticleDOI
TL;DR: The methodology identifies and characterises genes with a similar expression profile, through data mining and integrating data from publicly available resources, to contribute to a better understanding of gene regulation and cell function.
Abstract: Background The identification of the organisation and dynamics of molecular pathways is crucial for the understanding of cell function. In order to reconstruct the molecular pathways in which a gene of interest is involved in regulating a cell, it is important to identify the set of genes to which it interacts with to determine cell function. In this context, the mining and the integration of a large amount of publicly available data, regarding the transcriptome and the proteome states of a cell, are a useful resource to complement biological research.

22 citations

Journal ArticleDOI
TL;DR: In conclusion, Sdc‐1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties.
Abstract: In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT-29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-1-depleted HT-29 xenograft growth was increased compared to controls. Decreased Sdc-1 expression was associated with an increased activation of β1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc-1-depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence. DATABASES: The GEO accession number of the Affymetrix transcriptomic screening is GSE58751.

22 citations

Journal ArticleDOI
TL;DR: It is shown that a single LA7 cell, derived from rat mammary adenocarcinoma has the ability to serially re-generate mammospheres in long-term non-adherent cultures, the differentiation potential to generate all the cell lineages of the mammary gland and branched duct-like structures that recapitulate morphologically and functionally the ductal–alveolar-like architecture of the Mammary tree.
Abstract: The cancer stem cell hypothesis posits that tumors are derived from a single cancer-initiating cell with stem cell properties. The task of identifying and characterizing cancer-initiating cells with stem cell properties at the single cell level has proven technically difficult because of the scarcity of the cancer stem cells in the tissue of origin and the lack of specific markers for cancer stem cells. Here we show that a single LA7 cell, derived from rat mammary adenocarcinoma has: the ability to serially re-generate mammospheres in long-term non-adherent cultures, the differentiation potential to generate all the cell lineages of the mammary gland and branched duct-like structures that recapitulate morphologically and functionally the ductal–alveolar-like architecture of the mammary tree. The properties of self-renewal, extensive capacity for proliferation, multi-lineage differentiation and the tubular-like structure formation potential suggest that LA7 cells is a cancer stem model system to study the dynamics of tumor formation at the single cell level.

20 citations


Cited by
More filters
Journal Article
TL;DR: Research data show that more resistant stem cells than common cancer cells exist in cancer patients, and to identify unrecognized differences between cancer stem cells and cancer cells might be able to develop effective classification, diagnose and treat for cancer.
Abstract: Stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Research data show that more resistant stem cells than common cancer cells exist in cancer patients.To identify unrecognized differences between cancer stem cells and cancer cells might be able to develope effective classification,diagnose and treat ment for cancer.

2,194 citations

Journal ArticleDOI
TL;DR: The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth as mentioned in this paper.
Abstract: In the absence of specific treatable mutations, platinum-based chemotherapy remains the gold standard of treatment for lung cancer patients. However, 5-year survival rates remain poor due to the development of resistance and eventual relapse. Resistance to conventional cytotoxic therapies presents a significant clinical challenge in the treatment of this disease. The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth. This CSC population has a number of key properties such as the ability to asymmetrically divide, differentiate and self-renew, in addition to having increased intrinsic resistance to therapy. While cytotoxic chemotherapy kills the bulk of tumor cells, CSCs are spared and have the ability to recapitulate the heterogenic tumor mass. The identification of lung CSCs and their role in tumor biology and treatment resistance may lead to innovative targeted therapies that may ultimately improve clinical outcomes in lung cancer patients. This review will focus on lung CSC markers, their role in resistance and their relevance as targets for future therapies.

119 citations

Journal ArticleDOI
TL;DR: The Genes-to-Systems Breast Cancer (G2SBC) Database is presented, a resource which integrates data about genes, transcripts and proteins reported in literature as altered in breast cancer cells and provides an ontology based query system and analysis tools related to intracellular pathways, PPIs, protein structure and systems modelling.
Abstract: Breast cancer is one of the most common cancer types. Due to the complexity of this disease, it is important to face its study with an integrated and multilevel approach, from genes, transcripts and proteins to molecular networks, cell populations and tissues. According to the systems biology perspective, the biological functions arise from complex networks: in this context, concepts like molecular pathways, protein-protein interactions (PPIs), mathematical models and ontologies play an important role for dissecting such complexity. In this work we present the Genes-to-Systems Breast Cancer (G2SBC) Database, a resource which integrates data about genes, transcripts and proteins reported in literature as altered in breast cancer cells. Beside the data integration, we provide an ontology based query system and analysis tools related to intracellular pathways, PPIs, protein structure and systems modelling, in order to facilitate the study of breast cancer using a multilevel perspective. The resource is available at the URL http://www.itb.cnr.it/breastcancer . The G2SBC Database represents a systems biology oriented data integration approach devoted to breast cancer. By means of the analysis capabilities provided by the web interface, it is possible to overcome the limits of reductionist resources, enabling predictions that can lead to new experiments.

104 citations

Journal ArticleDOI
13 Aug 2019-Oncogene
TL;DR: The results implicate that hypoxia-induced ROS trigger mitochondrial fission and CDDP resistance through downregulation of p-Drp1 (Ser637) and Mfn1 in ovarian cancer cells.
Abstract: Mitochondria undergo fission and fusion continually for survival through the course of cellular adaption processes in response to changes in the surrounding environment. Dysregulated mitochondrial dynamics has been reported in various diseases including cancer. Under hypoxic conditions (<1% O2), the relationship between mitochondrial dynamics and sensitivity to cisplatin (CDDP) was examined in ovarian cancer cells. We found that hypoxia promoted mitochondrial fission and CDDP resistance in ovarian cancer cells. Hypoxia-induced reactive oxygen species (ROS) caused an increase in mitochondrial fission, a response abolished by free radical scavenging with N-acetylcysteine (NAC) and Trolox. Also, treatment of hydrogen peroxide (H2O2) decreased inhibitory p-Drp1 (Ser637) content and increased mitochondrial fission. Suppression of mitochondrial fission enhanced the CDDP sensitivity of hypoxic ovarian cancer cells. Lastly, in tumor spheroids from malignant ascites or tissues of patients with advanced-stage ovarian cancer, pretreatment with Mdivi-1 increased the CDDP sensitivity. Taken together, our results implicate that hypoxia-induced ROS trigger mitochondrial fission and CDDP resistance through downregulation of p-Drp1 (Ser637) and Mfn1 in ovarian cancer cells. Inhibition of Drp1 by Mdivi-1 treatment or si-Drp1 transfection increased CDDP sensitivity of ovarian cancer cells under hypoxia. Therefore, mitochondrial dynamics of cancer cells adapting to the hypoxic tumor microenvironment could be a potential target for anticancer therapy.

95 citations

Journal ArticleDOI
02 Mar 2016-PLOS ONE
TL;DR: It is demonstrated that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.
Abstract: Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (P<0.05). Immunofluorescence staining showed increased E-cadherin expression (P<0.05) and decreased expression of OCT4, N-cadherin and vimentin (P<0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (P<0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.

86 citations