scispace - formally typeset
Search or ask a question
Author

Eli Dwek

Bio: Eli Dwek is an academic researcher from Goddard Space Flight Center. The author has contributed to research in topics: Cosmic dust & Galaxy. The author has an hindex of 68, co-authored 268 publications receiving 16734 citations. Previous affiliations of Eli Dwek include Oak Ridge Associated Universities.


Papers
More filters
Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen9, Matthieu Béthermin7, Matthieu Béthermin9, Andrew Blain2, Alessandro Boselli10, C. Bridge2, Drew Brisbin11, V. Buat10, Denis Burgarella10, N. Castro-Rodríguez12, N. Castro-Rodríguez13, Antonio Cava14, P. Chanial7, Michele Cirasuolo15, David L. Clements8, A. Conley16, L. Conversi4, Asantha Cooray2, Asantha Cooray17, C. D. Dowell3, C. D. Dowell2, Elizabeth Dubois1, Eli Dwek18, Simon Dye19, Stephen Anthony Eales20, David Elbaz7, Duncan Farrah1, A. Feltre21, P. Ferrero13, P. Ferrero12, N. Fiolet9, N. Fiolet22, M. Fox8, Alberto Franceschini21, Walter Kieran Gear20, E. Giovannoli10, Jason Glenn16, Yan Gong17, E. A. González Solares23, Matthew Joseph Griffin20, Mark Halpern24, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis10, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar15, O. Ilbert10, K. G. Isaak25, Rob Ivison6, Rob Ivison15, Guilaine Lagache9, E. Le Floc'h7, L. R. Levenson2, L. R. Levenson3, B. Lo Faro21, Nanyao Y. Lu2, S. C. Madden7, Bruno Maffei26, Georgios E. Magdis7, G. Mainetti21, Lucia Marchetti21, G. Marsden24, J. Marshall3, J. Marshall2, A. M. J. Mortier8, Hien Nguyen2, Hien Nguyen3, B. O'Halloran8, Alain Omont22, Mat Page27, P. Panuzzo7, Andreas Papageorgiou20, H. Patel8, Chris Pearson28, Chris Pearson29, Ismael Perez-Fournon13, Ismael Perez-Fournon12, Michael Pohlen20, Jonathan Rawlings27, Gwenifer Raymond20, Dimitra Rigopoulou30, Dimitra Rigopoulou28, L. Riguccini7, D. Rizzo8, Giulia Rodighiero21, Isaac Roseboom1, Isaac Roseboom6, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz2, Douglas Scott24, Nick Seymour27, Nick Seymour31, D. L. Shupe2, A. J. Smith1, Jamie Stevens32, M. Symeonidis27, Markos Trichas33, K. E. Tugwell27, Mattia Vaccari21, Ivan Valtchanov4, Joaquin Vieira2, Marco P. Viero2, L. Vigroux22, Lifan Wang1, Robyn L. Ward1, Julie Wardlow17, G. Wright15, C. K. Xu2, Michael Zemcov2, Michael Zemcov3 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ∼380deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg^2. Fields range in size from 0.01 to ∼20 deg^2, using the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel-Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution. The survey will detect of the order of 100 000 galaxies at 5σ in some of the best-studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to facilitate redshift determination, rapidly identify unusual objects and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include the total infrared emission of galaxies, the evolution of the luminosity function, the clustering properties of dusty galaxies and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

852 citations

Journal ArticleDOI
TL;DR: The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang as discussed by the authors, with additional constraints coming from studies of the attenuation of TeV γ-rays.
Abstract: ▪ Abstract The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer (COBE) mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV γ-rays. At the same time, there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory (ISO) instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array (SCUBA) instrument. This article reviews the measurements of the infrared background and sources contributing to it and discusses the implications for past and present cosmic processes.

850 citations

Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen, Matthieu Béthermin7, Andrew Blain2, Alessandro Boselli9, C. Bridge2, Drew Brisbin10, V. Buat9, Denis Burgarella9, N. Castro-Rodríguez11, N. Castro-Rodríguez12, Antonio Cava13, P. Chanial7, Michele Cirasuolo14, David L. Clements8, A. Conley15, L. Conversi4, Asantha Cooray16, Asantha Cooray2, C. D. Dowell3, C. D. Dowell2, Elizabeth Dubois1, Eli Dwek17, Simon Dye18, Stephen Anthony Eales19, David Elbaz7, Duncan Farrah1, A. Feltre20, P. Ferrero11, P. Ferrero12, N. Fiolet21, M. Fox8, Alberto Franceschini20, Walter Kieran Gear19, E. Giovannoli9, Jason Glenn15, Yan Gong16, E. A. González Solares22, Matthew Joseph Griffin19, Mark Halpern23, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis9, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar14, O. Ilbert9, K. G. Isaak24, Rob Ivison6, Rob Ivison14, Guilaine Lagache, E. Le Floc'h7, L. R. Levenson2, L. R. Levenson3, B. Lo Faro20, Nanyao Y. Lu2, S. C. Madden7, Bruno Maffei25, Georgios E. Magdis7, G. Mainetti20, Lucia Marchetti20, G. Marsden23, J. Marshall3, J. Marshall2, A. M. J. Mortier8, Hien Nguyen2, Hien Nguyen3, B. O'Halloran8, Alain Omont21, Mat Page26, P. Panuzzo7, Andreas Papageorgiou19, H. Patel8, Chris Pearson27, Chris Pearson28, Ismael Perez-Fournon12, Ismael Perez-Fournon11, Michael Pohlen19, Jonathan Rawlings26, Gwenifer Raymond19, Dimitra Rigopoulou27, Dimitra Rigopoulou29, L. Riguccini7, D. Rizzo8, Giulia Rodighiero20, Isaac Roseboom6, Isaac Roseboom1, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz2, Douglas Scott23, Nick Seymour30, Nick Seymour26, D. L. Shupe2, A. J. Smith1, Jamie Stevens31, M. Symeonidis26, Markos Trichas32, K. E. Tugwell26, Mattia Vaccari20, Ivan Valtchanov4, Joaquin Vieira2, Marco P. Viero2, L. Vigroux21, Lifan Wang1, Robyn L. Ward1, Julie Wardlow16, G. Wright14, C. K. Xu2, Michael Zemcov2, Michael Zemcov3 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ~380 deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

707 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented new interstellar dust models which have been derived by simultaneously fitting the far-ultraviolet to near-infrared extinction, the diffuse infrared (IR) emission and, unlike previous models, the elemental abundance constraints on the dust for different interstellar medium abundances, including solar, F and G star, and B star abundances.
Abstract: We present new interstellar dust models which have been derived by simultaneously fitting the far-ultraviolet to near-infrared extinction, the diffuse infrared (IR) emission and, unlike previous models, the elemental abundance constraints on the dust for different interstellar medium abundances, including solar, F and G star, and B star abundances. The fitting problem is a typical ill-posed inversion problem, in which the grain size distribution is the unknown, which we solve by using the method of regularization. The dust model contains various components: PAHs, bare silicate, graphite, and amorphous carbon particles, as well as composite particles containing silicate, organic refractory material, water ice, and voids. The optical properties of these components were calculated using physical optical constants. As a special case, we reproduce the Li & Draine (2001) results, however their model requires an excessive amount of silicon, magnesium, and iron to be locked up in dust: about 50 ppm (atoms per million of H atoms), significantly more than the upper limit imposed by solar abundances of these elements, about 34, 35, and 28 ppm, respectively. A major conclusion of this paper is that there is no unique interstellar dust model that simultaneously fits the observed extinction, diffuse IR emission, and abundances constraints.

670 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of the elemental abundances in the gas and dust phases of the interstellar medium (ISM) of our Galaxy by generalizing standard models for its dynamical and chemical evolution is studied.
Abstract: We present models for the evolution of the elemental abundances in the gas and dust phases of the interstellar medium (ISM) of our Galaxy by generalizing standard models for its dynamical and chemical evolution. In these models, the stellar birthrate history is determined by the infall rate of primordial gas and by its functional dependence on the mass surface density of the stars and gas. We adopt a two-component Galaxy consisting of a central bulge and an exponential disk with different infall rates and stellar birthrate histories. Condensation in stellar winds, Type Ia and Type II supernovae, and the accretion of refractory elements onto preexisting grains in dense molecular clouds are the dominant contributors to the abundance of elements locked up in the dust. Grain destruction by sputtering and evaporative grain-grain collisions in supernova remnants are the most important mechanisms that return these elements back to the gas phase. Guided by observations of dust formation in various stellar sources, and by the presence of isotopic anomalies in meteorites, we calculate the production yield of silicate and carbon dust as a function of stellar mass. We find that Type II supernovae are the main source of silicate dust in the Galaxy. Carbon dust is produced primarily by low-mass stars in the ~2-5 M☉ range. Type Ia SNe can be important sources of metallic iron dust in the ISM. We also analyze the origin of the elemental depletion pattern and find that the observed core + mantle depletion must reflect the efficiency of the accretion process in the ISM. We also find that grain destruction is very efficient, leaving only ~10% of the refractory elements in grain cores. Observed core depletions are significantly higher, requiring significant UV, cosmic ray, or shock processing of the accreted mantle into refractory core material. Adopting the current grain destruction lifetimes from Jones et al., we formulate a prescription for its evolution in time. We make a major assumption, that the accretion timescale evolves in a similar fashion, so that the current ratio between these quantities is preserved over time. We then calculate the evolution of the dust abundance and composition at each Galactocentric radius as a function of time. We find that the dust mass is linearly proportional to the ISM metallicity and is equal to about 40% of the total mass of heavy elements in the Galaxy, independent of Galactocentric radius. The derived relation of dust mass with metallicity is compared to the observed Galactic dust abundance gradient, and to the Mdust versus log (O/H) relation that is observed in external dwarf galaxies. The dependence of dust composition on the mass of the progenitor star and the delayed recycling of newly synthesized dust by low-mass stars back to the ISM give rise to variations in the dust composition as a function of time. We identify three distinct epochs in the evolution of the dust composition, characterized by different carbon-to-silicate mass ratios. Two such epochs are represented by the Galaxy and the SMC. The third is characterized by an excess of carbon dust (compared to the Milky Way Galaxy), and should be observed in galaxies or star-forming regions in which the most massive carbon stars are just evolving off the main sequence. Our models provide a framework for the self-consistent inclusion of dust in population synthesis models for various pre-galactic and galactic systems, allowing for the calculation of their UV to far-infrared spectral energy distribution at various stages of their evolution.

661 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract: We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

6,201 citations

Journal ArticleDOI
TL;DR: In this article, far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT is presented.
Abstract: We present far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at lambda approximately greater than 40 microns. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T approx. 40 - 55 K (warm dust) and T approx. 20-23 K (cool dust) and with a dust emissivity index epsilon = 2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to approx. 150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once resealed for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 microns and the IRAS FIR emission in the range 40 - 120 microns is approx. 1.75, with small variations from galaxy to galaxy. This ratio is about 40% larger than previously inferred from data at millimeter wavelengths. Although the galaxies in our sample are generally classified as "UV bright," for four of them the UV energy emerging shortward of 0.2 microns is less than 15% of the FIR energy. On average, about 30% of the bolometric flux is coming out in the UV-to-near-IR wavelength range; the rest is emitted in the FIR. Energy balance calculations show that the FIR emission predicted by the dust reddening of the UV-to-near-IR stellar emission is within a factor of approx. 2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z approx. greater than 1), UV - bright star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys, unless: (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.

5,255 citations