scispace - formally typeset
Search or ask a question
Author

Eliahu Heldman

Bio: Eliahu Heldman is an academic researcher from Ben-Gurion University of the Negev. The author has contributed to research in topics: Vesicle & Targeted drug delivery. The author has an hindex of 19, co-authored 31 publications receiving 1534 citations. Previous affiliations of Eliahu Heldman include Science Applications International Corporation & Leidos.

Papers
More filters
Journal ArticleDOI
TL;DR: This review will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery, including a review of current activities in the field of liposomes, and challenging issues of targeting and triggering will be discussed in detail.
Abstract: In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles.

768 citations

Journal ArticleDOI
TL;DR: Besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference, nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA–DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.
Abstract: Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA–DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.

176 citations

Journal ArticleDOI
TL;DR: In vivo studies demonstrate a significant uptake of the hybrids by tumors together with specific gene silencing and this split-functionality approach presents a new route in the development of “smart” nucleic acids based nanoparticles and switches for various biomedical applications.
Abstract: Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of protein functions and improved detection sensitivity. Here we report a similar technique based on a pair of RNA-DNA hybrids that can be used generally for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept, this work mainly focuses on the activation of RNA interference. However, the release of other functionalities (such as resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumours together with specific gene silencing. This split-functionality approach presents a new route in the development of 'smart' nucleic acid-based nanoparticles and switches for various biomedical applications.

112 citations

Journal ArticleDOI
TL;DR: Depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.
Abstract: Specific small interfering RNAs (siRNAs) designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD) simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.

52 citations

Journal ArticleDOI
TL;DR: The effect of lithium and carbamazepine to lower cAMP formation in AC5-rich dopaminergic brain regions suggests that D1-dopamine receptors in these regions are involved in the antidepressant effect of mood stabilizers.
Abstract: Objectives: Lithium, valproate, and carbamazepine decrease stimulated brain cyclic-AMP (cAMP) levels. Adenylyl cyclase (AC), of which there are nine membrane-bound isoforms (AC1-AC9), catalyzes the formation of cAMP. We have recently demonstrated preferential inhibition of AC5 by lithium. We now sought to determine whether carbamazepine and valproate also preferentially inhibit specific AC isoforms or decrease cAMP levels via different mechanisms. Methods: COS7 cells were transfected with one of AC1-AC9, with or without D1-dopamine receptors. Carbamazepine’s and valproate’s effect on forskolin- or D1 agonist-stimulated ACs was studied. The effect of Mg2+ on lithium’s inhibition was studied in membrane-enriched fraction from COS7 cells co-expressing AC5 and D1 receptors. AC5 knockout mice were tested for a behavioral phenotype similar to that of lithium treatment. Results: Carbamazepine preferentially inhibited forskolin-stimulated AC5 and AC1 and all D1 agonist-stimulated ACs, with AC5 and AC7 being the most sensitive. When compared to 1 or 3 mM Mg2+, 10 mM Mg2+ reduced lithium-induced AC5 inhibition by 70%. In silico modeling suggests that among AC isoforms carbamazepine preferentially affects AC1 and AC5 by interacting with the catechol-estrogen site. Valproate did not affect any forskolin- or D1 receptor-stimulated AC. AC5 knockout mice responded similarly to antidepressant- or lithium-treated wild-types in the forced-swim test but not in the amphetamine-induced hyperactivity mania model. Conclusions: Lithium and carbamazepine preferentially inhibit AC5, albeit via different mechanisms. Lithium competes with Mg2+, which is essential for AC activity; carbamazepine competes for AC’s catechol-estrogen site. Antidepressant-like behavior of AC5 knockout mice in the forced-swim test supports the notion that AC5 inhibition is involved in the antidepressant effect of lithium and carbamazepine. The effect of lithium and carbamazepine to lower cAMP formation in AC5-rich dopaminergic brain regions suggests that D1-dopamine receptors in these regions are involved in the antidepressant effect of mood stabilizers.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed overview of the synthesis, properties and applications of nanoparticles exist in different forms NPs are tiny materials having size ranges from 1 to 100nm They can be classified into different classes based on their properties, shapes or sizes.

3,282 citations

Journal ArticleDOI
TL;DR: The advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications are discussed.
Abstract: The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

1,573 citations

Journal ArticleDOI
TL;DR: The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology where required.
Abstract: Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.

1,201 citations

Journal ArticleDOI
TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Abstract: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz*,‡ †Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States ‡Center for Bio/Molecular Science and Engineering Code 6900 and Division of Optical Sciences Code 5611, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States College of Science, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, United States Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States Sotera Defense Solutions, Crofton, Maryland 21114, United States

1,169 citations