scispace - formally typeset
Search or ask a question
Author

Elias Z. Tragos

Bio: Elias Z. Tragos is an academic researcher from Foundation for Research & Technology – Hellas. The author has contributed to research in topics: Wireless network & Radio resource management. The author has an hindex of 19, co-authored 68 publications receiving 1660 citations. Previous affiliations of Elias Z. Tragos include National Technical University of Athens & National and Kapodistrian University of Athens.


Papers
More filters
Journal ArticleDOI
TL;DR: The scope of this work is to give an overview of the security threats and challenges that cognitive radios and cognitive radio networks face, along with the current state-of-the-art to detect the corresponding attacks.
Abstract: With the rapid proliferation of new technologies and services in the wireless domain, spectrum scarcity has become a major concern. The allocation of the Industrial, Medical and Scientific (ISM) band has enabled the explosion of new technologies (e.g. Wi-Fi) due to its licence-exempt characteristic. The widespread adoption of Wi-Fi technology, combined with the rapid penetration of smart phones running popular user services (e.g. social online networks) has overcrowded substantially the ISM band. On the other hand, according to a number of recent reports, several parts of the static allocated licensed bands are under-utilized. This has brought up the idea of the opportunistic use of these bands through the, so-called, cognitive radios and cognitive radio networks. Cognitive radios have enabled the opportunity to transmit in several licensed bands without causing harmful interference to licensed users. Along with the realization of cognitive radios, new security threats have been raised. Adversaries can exploit several vulnerabilities of this new technology and cause severe performance degradation. Security threats are mainly related to two fundamental characteristics of cognitive radios: cognitive capability, and reconfigurability. Threats related to the cognitive capability include attacks launched by adversaries that mimic primary transmitters, and transmission of false observations related to spectrum sensing. Reconfiguration can be exploited by attackers through the use of malicious code installed in cognitive radios. Furthermore, as cognitive radio networks are wireless in nature, they face all classic threats present in the conventional wireless networks. The scope of this work is to give an overview of the security threats and challenges that cognitive radios and cognitive radio networks face, along with the current state-of-the-art to detect the corresponding attacks. In addition, future challenges are addressed.

434 citations

Journal ArticleDOI
TL;DR: The scope of this work is to give an overview of the problem of spectrum assignment in cognitive radio networks, presenting the state-of-the-art proposals that have appeared in the literature, analyzing the criteria for selecting the most suitable portion of the spectrum and showing the most common approaches and techniques used to solve the spectrum assignment problem.
Abstract: Cognitive radio (CR) has emerged as a promising technology to exploit the unused portions of spectrum in an opportunistic manner. The fixed spectrum allocation of governmental agencies results in unused portions of spectrum, which are called "spectrum holes" or "white spaces". CR technology overcomes this issue, allowing devices to sense the spectrum for unused portions and use the most suitable ones, according to some pre-defined criteria. Spectrum assignment is a key mechanism that limits the interference between CR devices and licensed users, enabling a more efficient usage of the wireless spectrum. Interference is a key factor that limits the performance in wireless networks. The scope of this work is to give an overview of the problem of spectrum assignment in cognitive radio networks, presenting the state-of-the-art proposals that have appeared in the literature, analyzing the criteria for selecting the most suitable portion of the spectrum and showing the most common approaches and techniques used to solve the spectrum assignment problem. Finally, an analysis of the techniques and approaches is presented, discussing also the open issues for future research in this area.

382 citations

Proceedings ArticleDOI
06 Apr 2014
TL;DR: The RERUM framework will comprise an architecture, built upon novel network protocols and interfaces as well as the design of smart objects hardware that will allow IoT applications to consider security and privacy mechanisms early in their design phase, ensuring a configurable balance between reliability and privacy.
Abstract: The Internet of Things (IoT) provides a platform for the interconnection of a plethora of smart objects. It has been widely accepted for providing Information and Communication Technologies (ICT) applications in many “smart” environments, such as cities, buildings, metering, and even agriculture. For several reasons though such applications have yet to achieve wide adoption; a major hurdle is the lack of user trust in the IoT and its role in everyday activities. RERUM, a recently started FP7 European Union project. aims to develop a framework which will allow IoT applications to consider security and privacy mechanisms early in their design phase, ensuring a configurable balance between reliability (requiring secure, trustworthy and precise data) and privacy (requiring data minimization for private information, like location). The RERUM framework will comprise an architecture, built upon novel network protocols and interfaces as well as the design of smart objects hardware. To highlight the challenges and evaluate the framework, RERUM will employ several Smart City application scenarios, which will be deployed and evaluated in real-world testbeds in two Smart Cities participating in the project. Here we detail the key technologies RERUM will investigate over the coming three years to reach its vision for IoT security, privacy and trust.

96 citations

Journal ArticleDOI
TL;DR: The fundamentals of access-network-based admission control are presented, an overview of the existing admission control algorithms for 2G and 3G networks are reviewed, and the design of a new admission control algorithm suitable for future 4G networks is given, specifically influenced by the objectives of the European WINNER project.
Abstract: Admission control plays a very important role in wireless systems, as it is one of the basic mechanisms for ensuring the quality of service offered to users. Based on the available network resources, it estimates the impact of adding or dropping a new session request. In both 2G and 3G systems, admission control refers to a single network. As we are moving towards heterogeneous wireless networks referred to as systems beyond 3G or 4G, admission control will need to deal with many heterogeneous networks and admit new sessions to a network that is most appropriate to supply the requested QoS. In this article we present the fundamentals of access-network-based admission control, an overview of the existing admission control algorithms for 2G and 3G networks, and finally give the design of a new admission control algorithm suitable for future 4G networks and specifically influenced by the objectives of the European WINNER project.

60 citations

Book ChapterDOI
28 Jun 2017
TL;DR: The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of Mobile Things, IoT, and Autonomous IoT.
Abstract: The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things ( ...

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI

3,181 citations

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Journal ArticleDOI
TL;DR: It is discussed, how blockchain, which is the underlying technology for bitcoin, can be a key enabler to solve many IoT security problems.

1,743 citations