scispace - formally typeset
Search or ask a question
Author

Eliezer Ganor

Bio: Eliezer Ganor is an academic researcher from Tel Aviv University. The author has contributed to research in topics: Mineral dust & Aerosol. The author has an hindex of 28, co-authored 59 publications receiving 3542 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the amount of soluble material on these particles is found to be related to their surface area, suggesting that the deposition process could be surface dependent, and the mechanism by which sulfate is found on some of the mineral dust particles is believed to originate from evaporating cloud drops, which were originally nucleated on sulfate cloud condensation nuclei (CCN) and subsequently collected dry interstitial mineral Dust particles.
Abstract: Measurements of aerosol composition in the eastern Mediterranean reveal that sulfate is found in most aerosol particles. Some of the large particles contain mixtures of chemicals such as sulfate and sea salt. The most striking observation is the discovery that mineral dust particles often get coated with sulfate and other soluble materials. The amount of soluble material on these particles is found to be related to their surface area, suggesting that the deposition process could be surface dependent. The mechanism by which sulfate is found on some of the mineral dust particles is believed to originate from evaporating cloud drops, which were originally nucleated on sulfate cloud condensation nuclei (CCN) and subsequently collected dry interstitial mineral dust particles. The presence of soluble material on mineral dust particles, converts the latter into effective giant CCN. This is further corroborated by the fact that the few large drops near the bases of convective clouds near the coast of Isr...

527 citations

Journal ArticleDOI
TL;DR: In this article, the authors provided estimates on the dust transport to the eastern Mediterranean are provided, which were obtained from several studies concerned with dust storms in Israel including: ground and airborne particle mass concentration, vertical profiles, dust storm trajectories, particle deposition and the climatology of dust storms.

265 citations

Journal ArticleDOI
TL;DR: In this paper, ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosols in California.
Abstract: Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate particles with r(sub m) less than 0.2 microns and coarse paritcles with r(sub m) greater than 0.7 microns. The 'window' in the tropospheric aerosol in this radius range was used to observe a stable stratospheric aerosol in 1992, with r(sub m) approximately 0.5 microns. A combination of such optical thickness and sky measurements can be used to assess the direct forcing and the climatic impact of aerosol. Systematic inversion for the key aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and phase function can give the relationship between the aerosol physical and optical properties that can be used to compute the radiative forcing. This forcing can be validated in dedicated field experiments.

222 citations

Journal ArticleDOI
TL;DR: In this paper, the size distribution and chemical composition of aerosol particles during a dust storm in the eastern Mediterranean are analyzed using the two-dimensional detailed spectral bin microphysical model of Tel Aviv University, which shows that ignoring the ice-nucleating ability of the mineral dust, but allowing the soluble component of the mixed aerosols to act as efficient giant cloud condensation nuclei, enhances the development of the warm rain process in continental clouds.
Abstract: [1] The size distribution and chemical composition of aerosol particles during a dust storm in the eastern Mediterranean are analyzed. The data were obtained from airborne measurements during the Mediterranean Israeli Dust Experiment (MEIDEX). The dust storm passed over the Mediterranean Sea and extended up to an altitude of about 2.5 km. The uniqueness of this dust storm is that approximately 35% of the coarse particles up to about 1 km in height were internally mixtures of mineral dust and sea salt. Just north of the dust storm, large convective clouds developed, and heavy rain was recorded by the radar on the Tropical Rainfall Measuring Mission satellite. The chemical and physical properties of the particles are used as initial conditions for conducting a sensitivity simulation study with the two-dimensional detailed spectral bin microphysical model of Tel Aviv University. The simulations show that ignoring the ice-nucleating ability of the mineral dust, but allowing the soluble component of the mixed aerosols to act as efficient giant cloud condensation nuclei (CCN), enhances the development of the warm rain process in continental clouds. In our simulations the rain amounts increased by as much as 37% compared to the case without giant CCN. Introducing similar coarse-mode particles into more maritime-type clouds does not have significant effect on the cloud or on the amount of rainfall. On the other hand, allowing the mineral dust particles to also act as efficient ice nuclei (IN) reduces the amount of rain on the ground compared to the case when they are inactive. The simulations also reveal that under the same profiles of meteorological parameters, maritime clouds develop precipitation earlier and reach lower altitudes than continental clouds. When the dust particles are active as both giant CCN and effective IN, the continental clouds become wider, while the effects on the more maritime clouds is very small.

219 citations

Journal ArticleDOI
TL;DR: In this paper, individual mineral dust particles collected in a dust storm over Israel were analyzed by a scanning electron microscopy and energy-dispersed system (SEM-EDS) and it was shown that the particles were mostly aggregates of varying mineralogical composition rather than pure minerals.
Abstract: Individual mineral dust particles collected in a dust storm over Israel were analyzed by a scanning electron microscopy and energy-dispersed system (SEM-EDS). The analysis shows that the particles were mostly aggregates of varying mineralogical composition rather than pure minerals. It is also shown that sulfur (not associated with gypsum) and, to a lesser extent, iron tended to reside on the particles' surface, while Ca, Mg, K, Al, and Si were all an integral part of the particles. The lack of NaCI and sulfuric acid aerosols in the sample indicates that the air mass did not interact with marine air or with clouds. This conclusion is further supported by back trajectory calculations. These findings suggest that the sulfur in the aerosols did not result from atmospheric processes but rather originated from processes in the source region. Black residue, surrounding some of the particles, suggests the possible existence of organic matter in the sample, probably originating from biological activity in the soil at the source of the particles. The method of individual particle analysis provides important information about the composition and morphology of the particles, information that otherwise cannot be obtained by bulk analysis methods.

191 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The operation and philosophy of the monitoring system, the precision and accuracy of the measuring radiometers, a brief description of the processing system, and access to the database are discussed.

6,535 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Total Ozone Mapping Spectrometer (TOMS) sensor on the Nimbus 7 satellite to map the global distribution of major atmospheric dust sources with the goal of identifying common environmental characteristics.
Abstract: [1] We use the Total Ozone Mapping Spectrometer (TOMS) sensor on the Nimbus 7 satellite to map the global distribution of major atmospheric dust sources with the goal of identifying common environmental characteristics The largest and most persistent sources are located in the Northern Hemisphere, mainly in a broad “dust belt” that extends from the west coast of North Africa, over the Middle East, Central and South Asia, to China There is remarkably little large-scale dust activity outside this region In particular, the Southern Hemisphere is devoid of major dust activity Dust sources, regardless of size or strength, can usually be associated with topographical lows located in arid regions with annual rainfall under 200–250 mm Although the source regions themselves are arid or hyperarid, the action of water is evident from the presence of ephemeral streams, rivers, lakes, and playas Most major sources have been intermittently flooded through the Quaternary as evidenced by deep alluvial deposits Many sources are associated with areas where human impacts are well documented, eg, the Caspian and Aral Seas, Tigris-Euphrates River Basin, southwestern North America, and the loess lands in China Nonetheless, the largest and most active sources are located in truly remote areas where there is little or no human activity Thus, on a global scale, dust mobilization appears to be dominated by natural sources Dust activity is extremely sensitive to many environmental parameters The identification of major sources will enable us to focus on critical regions and to characterize emission rates in response to environmental conditions With such knowledge we will be better able to improve global dust models and to assess the effects of climate change on emissions in the future It will also facilitate the interpretation of the paleoclimate record based on dust contained in ocean sediments and ice cores

2,653 citations

Journal ArticleDOI
TL;DR: In this paper, the AERONET network of ground-based radiometers were used to remotely sense the aerosol absorption and other optical properties in several key locations, and the results showed robust differentiation in both the magnitude and spectral dependence of the absorption, a property driving aerosol climate forcing.
Abstract: Aerosol radiative forcing is a critical, though variable and uncertain, component of the global climate. Yet climate models rely on sparse information of the aerosol optical properties. In situ measurements, though important in many respects, seldom provide measurements of the undisturbed aerosol in the entire atmospheric column. Here, 8 yr of worldwide distributed data from the AERONET network of ground-based radiometers were used to remotely sense the aerosol absorption and other optical properties in several key locations. Established procedures for maintaining and calibrating the global network of radiometers, cloud screening, and inversion techniques allow for a consistent retrieval of the optical properties of aerosol in locations with varying emission sources and conditions. The multiyear, multi-instrument observations show robust differentiation in both the magnitude and spectral dependence of the absorption—a property driving aerosol climate forcing, for desert dust, biomass burning, urban‐industrial, and marine aerosols. Moreover, significant variability of the absorption for the same aerosol type appearing due to different meteorological and source characteristics as well as different emission characteristics are observed. It is expected that this aerosol characterization will help refine aerosol optical models and reduce uncertainties in satellite observations of the global aerosol and in modeling aerosol impacts on climate.

2,653 citations

Posted Content
TL;DR: A review of the toxicity of nanoparticles is presented in this paper, with the goal of informing public health concerns related to nanoscience while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them.
Abstract: This review is written with the goal of informing public health concerns related to nanoscience, while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to nanoparticles and dust from natural sources and human activities, the recent development of industry and combustion-based engine transportation profoundly increasing anthropogenic nanoparticulate pollution. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Among diseases associated with nanoparticles are asthma, bronchitis, lung cancer, neurodegenerative diseases (such as Parkinson`s and Alzheimer`s diseases), Crohn`s disease, colon cancer. Nanoparticles that enter the circulatory system are related to occurrence of arteriosclerosis, and blood clots, arrhythmia, heart diseases, and ultimately cardiac death. We show that possible adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, and agglomeration state. The faster we will understand their causes and mechanisms, the more likely we are to find cures for diseases associated with nanoparticle exposure. We foresee a future with better-informed, and hopefully more cautious manipulation of engineered nanomaterials, as well as the development of laws and policies for safely managing all aspects of nanomaterial manufacturing, industrial and commercial use, and recycling.

2,652 citations

Journal ArticleDOI
TL;DR: This review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body has adapted to defend itself against nanoparticulate intruders, while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them.
Abstract: This review is presented as a common foundation for scientists interested in nanoparticles, their origin, activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of “nano,” while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders. The reticuloendothelial system, in particular, actively neutralizes and eliminates foreign matter in the body, including viruses and nonbiological particles. Particles originating from human activities have existed for millennia, e.g., smoke from combustion and lint from garments, but the recent development of industry and combustion-based engine transportation has profoundly increased anthropogenic particulate pollution. Significantly, technological advancement has also changed the character of particulate pollution, increasing the proportion of nanometer-sized particles-“nanoparticles”-and expanding the variety of chemical compositions. Recent epidemiological studies have shown a strong correlation between particulate air pollution levels, respiratory and cardiovascular diseases, various cancers, and mortality. Adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, agglomeration state, and electromagnetic properties. Animal and human studies show that inhaled nanoparticles are less efficiently removed than larger particles by the macrophage clearance mechanisms in the lungs, causing lung damage, and that nanoparticles can translocate through the circulatory, lymphatic, and nervous systems to many tissues and organs, including the brain. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Examples of toxic effects include tissue inflammation, and altered cellular redox balance toward oxidation, causing abnormal function or cell death. The manipulation of matter at the scale of atoms, “nanotechnology,” is creating many new materials with characteristics not always easily predicted from current knowledge. Within the nearly limitless diversity of these materials, some happen to be toxic to biological systems, others are relatively benign, while others confer health benefits. Some of these materials have desirable characteristics for industrial applications, as nanostructured materials often exhibit beneficial properties, from UV absorbance in sunscreen to oil-less lubrication of motors. A rational science-based approach is needed to minimize harm caused by these materials, while supporting continued study and appropriate industrial development. As current knowledge of the toxicology of “bulk” materials may not suffice in reliably predicting toxic forms of nanoparticles, ongoing and expanded study of “nanotoxicity” will be necessary. For nanotechnologies with clearly associated health risks, intelligent design of materials and devices is needed to derive the benefits of these new technologies while limiting adverse health impacts. Human exposure to toxic nanoparticles can be reduced through identifying creation-exposure pathways of toxins, a study that may someday soon unravel the mysteries of diseases such as Parkinson’s and Alzheimer’s. Reduction in fossil fuel combustion would have a large impact on global human exposure to nanoparticles, as would limiting deforestation and desertification. While nanotoxicity is a relatively new concept to science, this review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body, in particular, has adapted to defend itself against nanoparticulate intruders.

2,598 citations