scispace - formally typeset
Search or ask a question
Author

Elina Ikonen

Bio: Elina Ikonen is an academic researcher from Minerva Foundation Institute for Medical Research. The author has contributed to research in topics: Endosome & Lipid droplet. The author has an hindex of 60, co-authored 197 publications receiving 24542 citations. Previous affiliations of Elina Ikonen include University of Helsinki & University of Geneva.


Papers
More filters
Journal ArticleDOI
05 Jun 1997-Nature
TL;DR: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer that function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
Abstract: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer. It is proposed that these rafts function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.

9,436 citations

Journal ArticleDOI
Alan E. Renton1, Elisa Majounie1, Adrian James Waite2, Javier Simón-Sánchez3, Javier Simón-Sánchez4, Sara Rollinson5, J. Raphael Gibbs1, J. Raphael Gibbs6, Jennifer C. Schymick1, Hannu Laaksovirta7, John C. van Swieten3, John C. van Swieten4, Liisa Myllykangas7, Hannu Kalimo7, Anders Paetau7, Yevgeniya Abramzon1, Anne M. Remes8, Alice Kaganovich1, Sonja W. Scholz1, Sonja W. Scholz9, Sonja W. Scholz10, Jamie Duckworth1, Jinhui Ding1, Daniel W. Harmer11, Dena G. Hernandez6, Dena G. Hernandez1, Janel O. Johnson1, Janel O. Johnson6, Kin Y. Mok6, Mina Ryten6, Danyah Trabzuni6, Rita Guerreiro6, Richard W. Orrell6, James Neal2, Alexandra Murray12, J. P. Pearson2, Iris E. Jansen3, David Sondervan3, Harro Seelaar4, Derek J. Blake2, Kate Young5, Nicola Halliwell5, Janis Bennion Callister5, Greg Toulson5, Anna Richardson5, Alexander Gerhard5, Julie S. Snowden5, David M. A. Mann5, David Neary5, Mike A. Nalls1, Terhi Peuralinna7, Lilja Jansson7, Veli-Matti Isoviita7, Anna-Lotta Kaivorinne8, Maarit Hölttä-Vuori7, Elina Ikonen7, Raimo Sulkava13, Michael Benatar14, Joanne Wuu14, Adriano Chiò15, Gabriella Restagno, Giuseppe Borghero16, Mario Sabatelli17, David Heckerman18, Ekaterina Rogaeva19, Lorne Zinman19, Jeffrey D. Rothstein9, Michael Sendtner20, Carsten Drepper20, Evan E. Eichler21, Can Alkan21, Ziedulla Abdullaev1, Svetlana Pack1, Amalia Dutra1, Evgenia Pak1, John Hardy6, Andrew B. Singleton1, Nigel Williams2, Peter Heutink3, Stuart Pickering-Brown5, Huw R. Morris22, Huw R. Morris2, Huw R. Morris12, Pentti J. Tienari7, Bryan J. Traynor1, Bryan J. Traynor9 
20 Oct 2011-Neuron
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.

3,784 citations

Journal ArticleDOI
TL;DR: Increased understanding of these processes and their integration at the organ systems level provides fundamental insights into the physiology of cholesterol trafficking.
Abstract: Cholesterol is an essential structural component in the cell membranes of most vertebrates. Increased understanding of the metabolism and functional compartmentalization of cholesterol and how this is related to the organ systems level should provide insights into the physiology of cholesterol trafficking.

1,240 citations

Journal ArticleDOI
01 Dec 2000-Science
TL;DR: The regulation of cholesterol homeostasis is now receiving a new focus, and this changed perspective may throw light on diseases caused by cholesterol excess, the prime example being atherosclerosis.
Abstract: Cholesterol plays an indispensable role in regulating the properties of cell membranes in mammalian cells. Recent advances suggest that cholesterol exerts many of its actions mainly by maintaining sphingolipid rafts in a functional state. How rafts contribute to cholesterol metabolism and transport in the cell is still an open issue. It has long been known that cellular cholesterol levels are precisely controlled by biosynthesis, efflux from cells, and influx of lipoprotein cholesterol into cells. The regulation of cholesterol homeostasis is now receiving a new focus, and this changed perspective may throw light on diseases caused by cholesterol excess, the prime example being atherosclerosis.

1,209 citations

Journal ArticleDOI
TL;DR: New evidence suggests that compositionally distinct lipid microdomains are assembled and may coexist within a given membrane.

637 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
05 Jun 1997-Nature
TL;DR: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer that function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
Abstract: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer. It is proposed that these rafts function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.

9,436 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
TL;DR: It is now becoming clear that lipid micro-environments on the cell surface — known as lipid rafts — also take part in this process of signalling transduction, where protein–protein interactions result in the activation of signalling cascades.
Abstract: Signal transduction is initiated by complex protein-protein interactions between ligands, receptors and kinases, to name only a few. It is now becoming clear that lipid micro-environments on the cell surface -- known as lipid rafts -- also take part in this process. Lipid rafts containing a given set of proteins can change their size and composition in response to intra- or extracellular stimuli. This favours specific protein-protein interactions, resulting in the activation of signalling cascades.

6,080 citations