scispace - formally typeset
Search or ask a question
Author

Elinor Ng Eaton

Bio: Elinor Ng Eaton is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Stem cell & Epithelial–mesenchymal transition. The author has an hindex of 17, co-authored 21 publications receiving 17475 citations.

Papers
More filters
Journal ArticleDOI
16 May 2008-Cell
TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.

8,052 citations

Journal ArticleDOI
19 Oct 2001-Cell
TL;DR: It is proposed that hSir2, the human homolog of the S. cerevisiae Sir2 protein known to be involved in cell aging and in the response to DNA damage, binds and deacetylates the p53 protein with a specificity for its C-terminal Lys382 residue.

2,500 citations

Journal ArticleDOI
22 Aug 1997-Cell
TL;DR: The cloning of a human gene, hEST2, that shares significant sequence similarity with the telomerase catalytic subunit genes of lower eukaryotes is reported, suggesting that the induction of hEST 2 mRNA expression is required for the telomersase activation that occurs during cellular immortalization and tumor progression.

1,907 citations

Journal ArticleDOI
TL;DR: It is shown here that expression of a mutant catalytic subunit of human telomerase results in complete inhibition of telomer enzyme activity, reduction in telomere length and death of tumor cells, validating human telomersase reverse transcriptase as an important target for the development of anti-neoplastic therapies.
Abstract: Telomerase is a ribonucleoprotein enzyme that maintains the protective structures at the ends of eukaryotic chromosomes, called telomeres. In most human somatic cells, telomerase expression is repressed, and telomeres shorten progressively with each cell division. In contrast, most human tumors express telomerase, resulting in stabilized telomere length. These observations indicate that telomere maintenance is essential to the proliferation of tumor cells. We show here that expression of a mutant catalytic subunit of human telomerase results in complete inhibition of telomerase activity, reduction in telomere length and death of tumor cells. Moreover, expression of this mutant telomerase eliminated tumorigenicity in vivo. These observations demonstrate that disruption of telomere maintenance limits cellular lifespan in human cancer cells, thus validating human telomerase reverse transcriptase as an important target for the development of anti-neoplastic therapies.

1,048 citations

Journal ArticleDOI
10 Jun 2011-Cell
TL;DR: In this article, the authors describe three signaling pathways, involving transforming growth factor (TGF)-β and canonical and noncanonical Wnt signaling, that collaborate to induce activation of the EMT program and thereafter function in an autocrine fashion to maintain the resulting mesenchymal state.

826 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
25 Nov 2009-Cell
TL;DR: The mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.

8,642 citations

Journal ArticleDOI
TL;DR: Processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias and the identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes.
Abstract: The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.

8,587 citations

Journal ArticleDOI
16 May 2008-Cell
TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.

8,052 citations

Journal ArticleDOI
TL;DR: The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues, and the convergence of signalling pathways is essential for EMT.
Abstract: The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.

6,036 citations