scispace - formally typeset
Search or ask a question
Author

Eliot Quataert

Other affiliations: University of California, UCB, Institute for Advanced Study  ...read more
Bio: Eliot Quataert is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Galaxy & Accretion (astrophysics). The author has an hindex of 66, co-authored 242 publications receiving 14271 citations. Previous affiliations of Eliot Quataert include University of California & UCB.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a theoretical framework for understanding plasma turbulence in astrophysical plasmas is presented, motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks.
Abstract: This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the inertial range above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations become the slow and entropy modes of the conventional MHD). In the dissipation range below ion gyroscale, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like electron reduced magnetohydrodynamic (ERMHD) equations and a passive cascade of ion entropy fluctuations both in space and velocity. The latter cascade brings the energy of the inertial-range fluctuations that was Landau-damped at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for all of these cascades. The relationship between the theoretical models proposed in this paper and astrophysical applications and observations is discussed in detail.

853 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated radiatively inefficient accretion flow models for Sgr A*, the supermassive black hole in our Galactic center, in light of new observational constraints.
Abstract: We investigate radiatively inefficient accretion flow models for Sgr A*, the supermassive black hole in our Galactic center, in light of new observational constraints. Confirmation of linear polarization in the submillimeter emission argues for accretion rates much less than the canonical Bondi rate. We consider models with low accretion rates and calculate the spectra produced by a hybrid electron population consisting of both thermal and nonthermal particles. The thermal electrons produce the submillimeter emission and can account for its linear polarization properties. As noted in previous work, the observed low-frequency radio spectrum can be explained if a small fraction (≈1.5%) of the electron thermal energy resides in a soft power-law tail. In the innermost region of the accretion flow, turbulence and/or magnetic reconnection events may occasionally accelerate a fraction of the electrons into a harder power-law tail. We show that the synchrotron emission from these electrons, or the Compton upscattering of synchrotron photons by the same electrons, may account for the X-ray flares observed by Chandra.

767 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have introduced new numerical methods for implementing stellar feedback on sub-GMC through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the UV through IR, supernovae (Type-I & II), stellar winds (fast O star through “slow” AGB winds), and HII photoionization.
Abstract: Feedback from massive stars is believed to play a critical role in driving galactic superwinds that enrich the intergalactic medium and shape the galaxy mass function, massmetallicity relation, and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-GMC through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the UV through IR, supernovae (Type-I & II), stellar winds (“fast” O star through “slow” AGB winds), and HII photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as 10 20 times the galaxy star formation rate. The mass-loading efficiency (wind mass loss rate divided by the star formation rate) scales roughly as _ Mwind= _ M / V 1 c (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from SMC-like dwarfs and Milky-way analogues to z 2 clumpy disks. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multi-phase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial and time scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass-loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically-adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.

527 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae and stellar winds, showing that stellar feedback is crucial to the regulation of star formation in galaxies.
Abstract: Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM) and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae and stellar winds. We employ a realistic cooling function, and find that a large fraction of the gas cools to ≲100 K, so that the ISM becomes highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady state, in which gas gravitationally collapses to form giant ‘molecular’ clouds (GMCs), dense clumps and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse ISM. This collapse and dispersal cycle is seen in models of Small Magellanic Cloud (SMC)-like dwarfs, the Milky Way and z∼ 2 clumpy disc analogues. The simulated global star formation efficiencies are consistent with the observed Kennicutt–Schmidt relation. Moreover, the star formation rates are nearly independent of the numerically imposed high-density star formation efficiency, density threshold and density scaling. This is a consequence of the fact that, in our simulations, star formation is regulated by stellar feedback limiting the amount of very dense gas available for forming stars. In contrast, in simulations without stellar feedback, i.e. under the action of only gravity and gravitationally induced turbulence, the ISM experiences runaway collapse to very high densities. In these simulations without feedback, the global star formation rates exceed observed galactic star formation rates by 1–2 orders of magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in galaxies.

506 citations

Journal ArticleDOI
TL;DR: In this paper, the authors predict the light curves and spectra of tidal flares as a function of time, highlighting the unique signatures of the tidal flares at optical and near-infrared wavelengths.
Abstract: A star that wanders too close to a massive black hole (BH) is shredded by the BH’s tidal gravity. Stellar gas falls back to the BH at a rate initially exceeding the Eddington rate, releasing a flare of energy. In anticipation of upcoming transient surveys, we predict the light curves and spectra of tidal flares as a function of time, highlighting the unique signatures of tidal flares at optical and near-infrared wavelengths. A reasonable fraction of the gas initially bound to the BH is likely blown away when the fallback rate is super-Eddington at early times. This outflow produces an optical luminosity comparable to that of a supernova; such events have durations of � 10 days and may have been missed in supernova searches that exclude the nuclear regions of galaxies. When the fallback rate subsides below Eddington, the gas accretes onto the BH via a thin disk whose emission peaks in the UV to soft X-rays. Some of this emission is reprocessed by the unbound stellar debris, producing a spectrum of very broad emission lines (with no corresponding narrow forbidden lines). These lines are the strongest for BHs with MBH � 10 5 10 6 M⊙ and thus optical surveys are particularly sensitive to the lowest mass BHs in galactic nuclei. Calibrating our models to ROSAT and GALEX observations, we predict detection rates for Pan-STARRS, PTF, and LSST and highlight some of the observational challenges associated with studying tidal disruption events in the optical. Upcoming surveys such as Pan-STARRS should detect at least tens of events per year, and may detect many more if current models of outflows during super-Eddington accretion are reasonably accurate. These surveys will significantly improve our knowledge of stellar dynamics in galactic nuclei, the physics of super-Eddington accretion, the demography of intermediate mass BHs, and the role of tidal disruption in the growth of massive BHs.

448 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations