scispace - formally typeset
Search or ask a question
Author

Elisa Salvetti

Other affiliations: University College Cork
Bio: Elisa Salvetti is an academic researcher from University of Verona. The author has contributed to research in topics: Lactobacillus & Lactobacillaceae. The author has an hindex of 18, co-authored 31 publications receiving 1737 citations. Previous affiliations of Elisa Salvetti include University College Cork.

Papers
More filters
Journal ArticleDOI
TL;DR: This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences and proposed reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties.
Abstract: The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).

1,496 citations

Journal ArticleDOI
TL;DR: The genome sequences of 213 Lactobacilli strains and associated genera are reported, and their encoded genetic catalogue for modifying carbohydrates and proteins are described, and a robust phylogenomic framework of existing species and for classifying new species is presented.
Abstract: Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.

404 citations

Journal ArticleDOI
TL;DR: The phylogenetic analysis based on 16S rRNA gene sequence revealed that the Lactobacillus family is divided into 15 groups of three or more species, 4 couples and 10 single lines of descents, and the clusters as possible nuclei of genera to be described in the future.
Abstract: Lactic Acid Bacteria (LAB) are a functional group of microorganisms comprising Gram-positive, catalase negative bacteria that produce lactic acid as the major metabolic end-product of carbohydrate fermentation. Among LAB, Lactobacillus is the genus including a high number of GRAS species (Generally Recognized As Safe) and many strains are among the most important bacteria in food microbiology and human nutrition, due to their contribution to fermented food production or their use as probiotics. From a taxonomic point of view, the genus Lactobacillus includes at present (October 2012), 152 validly described species, and it belongs to the family Lactobacillaceae together with genus Pediococcus, with whom it is phylogenetically intermixed. The updated phylogenetic analysis based on 16S rRNA gene sequence revealed that the family is divided into 15 groups of three or more species, 4 couples and 10 single lines of descents. In addition, other taxonomically relevant information for Lactobacillus species was collected. This study aims at updating the taxonomy of the genus Lactobacillus, presenting the phylogenetic structure of the Lactobacillaceae and discussing the clusters as possible nuclei of genera to be described in the future. It is expected that scientists and producers in the field of probiotics could benefit from information reported here about the correct identification procedures and nomenclature of beneficial strains of lactobacilli.

233 citations

Journal ArticleDOI
TL;DR: The antibiotic susceptibility patterns of 182 Lactobacillus type strains were determined and these phenotypes were compared to their genotypes based on genome-wide annotations of AR genes, providing evidence for rationally revising the regulatory guidelines for safety assessment of lactobacilli entering the food chain as starter cultures, food preservatives, or probiotics.
Abstract: Lactobacillus species are widely used as probiotics and starter cultures for a variety of foods, supported by a long history of safe usage. Although more than 35 species meet the European Food Safety Authority (EFSA) criteria for qualified presumption of safety status, the safety of Lactobacillus species and their carriage of antibiotic resistance (AR) genes is under continuing ad hoc review. To comprehensively update the identification of AR in the genus Lactobacillus, we determined the antibiotic susceptibility patterns of 182 Lactobacillus type strains and compared these phenotypes to their genotypes based on genome-wide annotations of AR genes. Resistances to trimethoprim, vancomycin, and kanamycin were the most common phenotypes. A combination of homology-based screening and manual annotation identified genes encoding resistance to aminoglycosides (20 sequences), tetracycline (18), erythromycin (6), clindamycin (60), and chloramphenicol (42). In particular, the genes aac(3) and lsa, involved in resistance to aminoglycosides and clindamycin, respectively, were found in Lactobacillus spp. Acquired determinants predicted to code for tetracycline and erythromycin resistance were detected in Lactobacillus ingluviei, Lactobacillus amylophilus, and Lactobacillus amylotrophicus, flanked in the genome by mobile genetic elements with potential for horizontal transfer. IMPORTANCELactobacillus species are generally considered to be nonpathogenic and are used in a wide variety of foods and products for humans and animals. However, many of the species examined in this study have antibiotic resistance levels which exceed those recommended by the EFSA, suggesting that these cutoff values should be reexamined in light of the genetic basis for resistance discussed here. Our data provide evidence for rationally revising the regulatory guidelines for safety assessment of lactobacilli entering the food chain as starter cultures, food preservatives, or probiotics and will facilitate comprehensive genotype-based assessment of strains for safety screening.

168 citations

Journal ArticleDOI
TL;DR: This study investigates the feasibility of dividing the genus Lactobacillus into more homogeneous genera/clusters, exploiting genome-based data and identifies 10 groups that satisfy more stringent criteria for genomic relatedness.
Abstract: The genus Lactobacillus includes over 200 species that are widely used in fermented food preservation and biotechnology or that are explored for beneficial effects on health. Naming, classifying, and comparing lactobacilli have been challenging due to the high level of phenotypic and genotypic diversity that they display and because of the uncertain degree of relatedness between them and associated genera. The aim of this study was to investigate the feasibility of dividing the genus Lactobacillus into more homogeneous genera/clusters, exploiting genome-based data. The relatedness of 269 species belonging primarily to the families Lactobacillaceae and Leuconostocaceae was investigated through phylogenetic analysis (by the use of ribosomal proteins and housekeeping genes) and the assessment of the average amino acid identity (AAI) and the percentage of conserved proteins (POCP). For each subgeneric group that emerged, conserved signature genes were identified. Both distance-based and sequence-based metrics showed that the Lactobacillus genus was paraphyletic and revealed the presence of 10 methodologically consistent subclades, which were also characterized by a distinct distribution of conserved signature orthologues. We present two ways to reclassify lactobacilli: a conservative division into two subgeneric groups based on the presence/absence of a key carbohydrate utilization gene or a more radical subdivision into 10 groups that satisfy more stringent criteria for genomic relatedness.IMPORTANCE Lactobacilli have significant scientific and economic value, but their extraordinary diversity means that they are not robustly classified. The 10 homogeneous genera/subgeneric entities that we identify here are characterized by uniform patterns of the presence/absence of specific sets of genes which offer potential as discovery tools for understanding differential biological features. Reclassification/subdivision of the genus Lactobacillus into more uniform taxonomic nuclei will also provide accurate molecular markers that will be enabling for regulatory approval applications. Reclassification will facilitate scientific communication related to lactobacilli and prevent misidentification issues, which are still the major cause of mislabeling of probiotic and food products reported worldwide.

106 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences and proposed reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties.
Abstract: The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).

1,496 citations

Journal ArticleDOI
TL;DR: This Consensus Statement outlines the definition and scope of the term ‘synbiotics’ as determined by an expert panel convened by the International Scientific Association for Probiotics and Prebiotics in May 2019 and explores the levels of evidence, safety, effects upon targets and implications for stakeholders of the synbiotic concept.
Abstract: In May 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP) convened a panel of nutritionists, physiologists and microbiologists to review the definition and scope of synbiotics. The panel updated the definition of a synbiotic to “a mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host”. The panel concluded that defining synbiotics as simply a mixture of probiotics and prebiotics could suppress the innovation of synbiotics that are designed to function cooperatively. Requiring that each component must meet the evidence and dose requirements for probiotics and prebiotics individually could also present an obstacle. Rather, the panel clarified that a complementary synbiotic, which has not been designed so that its component parts function cooperatively, must be composed of a probiotic plus a prebiotic, whereas a synergistic synbiotic does not need to be so. A synergistic synbiotic is a synbiotic for which the substrate is designed to be selectively utilized by the co-administered microorganisms. This Consensus Statement further explores the levels of evidence (existing and required), safety, effects upon targets and implications for stakeholders of the synbiotic concept. Gut microbiota can be manipulated to benefit host health, including the use of probiotics, prebiotics and synbiotics. This Consensus Statement outlines the definition and scope of the term ‘synbiotics’ as determined by an expert panel convened by the International Scientific Association for Probiotics and Prebiotics in May 2019.

953 citations

Journal ArticleDOI
TL;DR: This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya, Archaea and Bacteria based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences and unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms.
Abstract: The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact.

857 citations

Journal ArticleDOI
30 Nov 2017-Nature
TL;DR: This paper showed that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus, and treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T helper 17 (TH17) cells.
Abstract: A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

802 citations