scispace - formally typeset
Search or ask a question
Author

Elise Lorenceau

Bio: Elise Lorenceau is an academic researcher from University of Grenoble. The author has contributed to research in topics: Drop (liquid) & Bubble. The author has an hindex of 23, co-authored 62 publications receiving 3828 citations. Previous affiliations of Elise Lorenceau include Centre national de la recherche scientifique & Harvard University.


Papers
More filters
Journal ArticleDOI
22 Apr 2005-Science
TL;DR: It is shown that the droplet size can be quantitatively predicted from the flow profiles of the fluids, which makes this a flexible and promising technique.
Abstract: Double emulsions are highly structured fluids consisting of emulsion drops that contain smaller droplets inside. Although double emulsions are potentially of commercial value, traditional fabrication by means of two emulsification steps leads to very ill-controlled structuring. Using a microcapillary device, we fabricated double emulsions that contained a single internal droplet in a core-shell geometry. We show that the droplet size can be quantitatively predicted from the flow profiles of the fluids. The double emulsions were used to generate encapsulation structures by manipulating the properties of the fluid that makes up the shell. The high degree of control afforded by this method and the completely separate fluid streams make this a flexible and promising technique.

2,049 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the behavior of a drop deposited on a conical fiber and showed that such a drop spontaneously moves towards the region of lower curvature, and the driving force was measured and shown to be a gradient of Laplace pressure.
Abstract: We study experimentally the behaviour of a drop deposited on a conical fibre. It is shown that for wetting liquids, such a drop spontaneously moves towards the region of lower curvature. The driving force is measured and shown to be a gradient of Laplace pressure, which allows us to characterize the dynamics of these self-propelling drops. We conclude by discussing the efficiency of this device for drying a solid initially coated with a liquid film.

390 citations

Journal ArticleDOI
23 Aug 2005-Langmuir
TL;DR: A new method for generating polymer vesicles from double emulsions from the breakup of concentric fluid streams, which directs the self-assembly of the dissolved diblock copolymers into vesicular structures.
Abstract: Diblock copolymers are known to spontaneously organize into polymer vesicles Typically, this is achieved through the techniques of film rehydration or electroformation We present a new method for generating polymer vesicles from double emulsions We generate precision water-in-oil-in-water double emulsions from the breakup of concentric fluid streams; the hydrophobic fluid is a volatile mixture of organic solvent that contains dissolved diblock copolymers We collect the double emulsions and slowly evaporate the organic solvent, which ultimately directs the self-assembly of the dissolved diblock copolymers into vesicular structures Independent control over all three fluid streams enables precision assembly of polymer vesicles and provides for highly efficient encapsulation of active ingredients within the polymerosomes We also use double emulsions with several internal drops to form new polymerosome structures

274 citations

Journal ArticleDOI
01 Nov 2004
TL;DR: It is shown that a drop larger than a critical radius cannot be trapped by a fiber whatever its velocity, and this critical size is determined as a function of the fiber radius.
Abstract: We study experimentally the dynamics of drops impacting horizontal fibers and characterize the ability of these objects to capture the drops. We first show that a drop larger than a critical radius cannot be trapped by a fiber whatever its velocity. We determine this critical size as a function of the fiber radius. Then we show that for smaller drops, different situations can occur: at a low impact velocity, the drop is entirely captured by the fiber, whereas some liquid is ejected when arriving faster. We quantify the threshold velocity of capture.

141 citations

Journal ArticleDOI
15 Jan 2008-Langmuir
TL;DR: An experimental and numerical study of the osmotic pressure in monodisperse ordered foams as a function of the liquid volume fraction and a quantitative investigation of the transition from a bubble close packing to a bcc structure are reported.
Abstract: We present an experimental and numerical study of the osmotic pressure in monodisperse ordered foams as a function of the liquid fraction. The data are compared to previous results obtained for disordered monodisperse and polydisperse concentrated emulsions. Moreover, we report a quantitative investigation of the transition from a bubble close packing to a bcc structure as a function of the liquid volume fraction. These findings are discussed in the context of theoretical models that have been proposed in the literature.

103 citations


Cited by
More filters
Journal ArticleDOI
22 Apr 2005-Science
TL;DR: This work demonstrated sub–diffraction-limited imaging with 60-nanometer half-pitch resolution, or one-sixth of the illumination wavelength, using silver as a natural optical superlens and showed that arbitrary nanostructures can be imaged with good fidelity.
Abstract: Recent theory has predicted a superlens that is capable of producing sub–diffraction-limited images. This superlens would allow the recovery of evanescent waves in an image via the excitation of surface plasmons. Using silver as a natural optical superlens, we demonstrated sub–diffraction-limited imaging with 60-nanometer half-pitch resolution, or one-sixth of the illumination wavelength. By proper design of the working wavelength and the thickness of silver that allows access to a broad spectrum of subwavelength features, we also showed that arbitrary nanostructures can be imaged with good fidelity. The optical superlens promises exciting avenues to nanoscale optical imaging and ultrasmall optoelectronic devices.

3,753 citations

Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
TL;DR: Fundamental and applied research in chemistry and biology benefits from opportunities provided by droplet-based microfluidic systems, which enable the miniaturization of reactions by compartmentalizing reactions in droplets of femoliter to microliter volumes.
Abstract: Fundamental and applied research in chemistry and biology benefits from opportunities provided by droplet-based microfluidic systems. These systems enable the miniaturization of reactions by compartmentalizing reactions in droplets of femoliter to microliter volumes. Compartmentalization in droplets provides rapid mixing of reagents, control of the timing of reactions on timescales from milliseconds to months, control of interfacial properties, and the ability to synthesize and transport solid reagents and products. Droplet-based microfluidics can help to enhance and accelerate chemical and biochemical screening, protein crystallization, enzymatic kinetics, and assays. Moreover, the control provided by droplets in microfluidic devices can lead to new scientific methods and insights.

1,702 citations

Journal ArticleDOI
04 Feb 2010-Nature
TL;DR: Artificial fibres are designed that mimic the structural features of silk and exhibit its directional water-collecting ability by tapping into both driving forces.
Abstract: Many biological surfaces in both the plant and animal kingdom possess unusual structural features at the micro- and nanometre-scale that control their interaction with water and hence wettability. An intriguing example is provided by desert beetles, which use micrometre-sized patterns of hydrophobic and hydrophilic regions on their backs to capture water from humid air. As anyone who has admired spider webs adorned with dew drops will appreciate, spider silk is also capable of efficiently collecting water from air. Here we show that the water-collecting ability of the capture silk of the cribellate spider Uloborus walckenaerius is the result of a unique fibre structure that forms after wetting, with the 'wet-rebuilt' fibres characterized by periodic spindle-knots made of random nanofibrils and separated by joints made of aligned nanofibrils. These structural features result in a surface energy gradient between the spindle-knots and the joints and also in a difference in Laplace pressure, with both factors acting together to achieve continuous condensation and directional collection of water drops around spindle-knots. Submillimetre-sized liquid drops have been driven by surface energy gradients or a difference in Laplace pressure, but until now neither force on its own has been used to overcome the larger hysteresis effects that make the movement of micrometre-sized drops more difficult. By tapping into both driving forces, spider silk achieves this task. Inspired by this finding, we designed artificial fibres that mimic the structural features of silk and exhibit its directional water-collecting ability.

1,584 citations

Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations