scispace - formally typeset
Search or ask a question
Author

Elizabeth Blackwood

Bio: Elizabeth Blackwood is an academic researcher from Genentech. The author has contributed to research in topics: Kinase & PI3K/AKT/mTOR pathway. The author has an hindex of 29, co-authored 51 publications receiving 6119 citations. Previous affiliations of Elizabeth Blackwood include Pfizer & Fred Hutchinson Cancer Research Center.


Papers
More filters
PatentDOI
09 Sep 1992-Science
TL;DR: In this paper, the Max polypeptide when associated with the Myc or Mad polyPEptide is capable of binding to nucleotide sequences containing CACGTG.
Abstract: Nucleic acid molecules capable of hybridizing under stringent conditions to the nucleotide sequence residing between positions 1 and 453 of the max cDNAs shown in Figure 2, or to the nucleotide sequence reisiding between positions 148 and 810 of the mad cDNAs shown in Figure 14. The Max polypeptide when associated with the Myc or Mad polypeptide is capable of binding to nucleotide sequences containing CACGTG.

1,602 citations

Journal ArticleDOI
23 Nov 1990-Science
TL;DR: It is suggested that some of the biological functions of Myc family proteins are accomplished by sequence-specific DNA binding that is mediated by the carboxyl-terminal region of the protein.
Abstract: While it has been known for some time that the c-Myc protein binds to random DNA sequences, no sequence-specific binding activity has been detected. At its carboxyl terminus, c-Myc contains a basic--helix-loop-helix (bHLH) motif, which is important for dimerization and specific DNA binding, as demonstrated for other bHLH protein family members. Of those studied, most bHLH proteins bind to sites that contain a CA- -TG consensus. In this study, the technique of selected and amplified binding-sequence (SAAB) imprinting was used to identify a DNA sequence that was recognized by c-Myc. A purified carboxyl-terminal fragment of human c-Myc that contained the bHLH domain bound in vitro in a sequence-specific manner to the sequence, CACGTG. These results suggest that some of the biological functions of Myc family proteins are accomplished by sequence-specific DNA binding that is mediated by the carboxyl-terminal region of the protein.

855 citations

Journal ArticleDOI
03 Jul 1998-Science
TL;DR: Current models regarding the role of enhancers in the regulation of transcription by RNA polymerase II are presented.
Abstract: In eukaryotes, transcription of genes by RNA polymerase II yields messenger RNA intermediates from which protein products are synthesized. Transcriptional enhancers are discrete DNA elements that contain specific sequence motifs with which DNA-binding proteins interact and transmit molecular signals to genes. Here, current models regarding the role of enhancers in the regulation of transcription by RNA polymerase II are presented.

833 citations

Journal ArticleDOI
01 Oct 1992-Nature
TL;DR: The identification of Max and the specific DNA-binding activities of Myc and Max provides an opportunity for directly testing the transcriptional activities of these proteins in mammalian cells and reports here that Myc overexpression activates, whereas Max overeexpression represses, transcription of a reporter gene.
Abstract: The Myc family proteins are thought to be involved in transcription because they have both a carboxy-terminal basic-helix-loop-helix-zipper (bHLH-Z) domain, common to a large class of transcription factors, and an amino-terminal fragment which, for c-Myc, has transactivating function when assayed in chimaeric constructs. In addition, c-, N- and L-Myc proteins heterodimerize, in vitro and in vivo, with the bHLH-Z protein Max. In vitro, Max homodimerizes but preferentially associates with Myc, which homodimerizes poorly. Furthermore Myc-Max heterodimers specifically bind the nucleotide sequence CACGTG with higher affinity than either homodimer alone. The identification of Max and the specific DNA-binding activities of Myc and Max provides an opportunity for directly testing the transcriptional activities of these proteins in mammalian cells. We report here that Myc overexpression activates, whereas Max overexpression represses, transcription of a reporter gene. Max-induced repression is relieved by overexpression of c-Myc. Repression requires the DNA-binding domain of Max, whereas relief of repression requires the dimerization and transcriptional activation activities of Myc. Both effects require Myc-Max-binding sites in the reporter gene.

450 citations

Journal ArticleDOI
TL;DR: It is shown here, by means of a coimmunoprecipitation assay with anti-Myc and anti-Max antibodies, that Myc and Max are associated in vivo and essentially all of the newly synthesized Myc can be detected in a complex with Max.
Abstract: Max is a helix-loop-helix zipper protein that associates in vitro with Myc family proteins to form a sequence-specific DNA-binding complex. We show here, by means of a coimmunoprecipitation assay with anti-Myc and anti-Max antibodies, that Myc and Max are associated in vivo and essentially all of the newly synthesized Myc can be detected in a complex with Max. This complex possesses specific DNA-binding activity for CACGTG-containing oligonucleotides. Although Max itself is a highly stable protein, Myc is rapidly degraded during or after its association with Max. In vivo Max is shown to be a nuclear protein phosphorylated by casein kinase II, and alternatively spliced forms of Max are expressed in cells. Furthermore, the levels of Max expression are equivalent in quiescent, mitogen-stimulated, and cycling cells. We conclude that the highly regulated rate of Myc biosynthesis is likely to be a limiting step in the formation of Myc:Max complexes.

394 citations


Cited by
More filters
Journal ArticleDOI
09 Oct 2009-Science
TL;DR: Hi-C is described, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing and demonstrates the power of Hi-C to map the dynamic conformations of entire genomes.
Abstract: We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

7,180 citations

Journal ArticleDOI
27 Aug 1993-Cell
TL;DR: Overexpressed Bax accelerates apoptotic death induced by cytokine deprivation in an IL-3-dependent cell line and counters the death repressor activity of B cl-2, suggesting a model in which the ratio of Bcl-2 to Bax determines survival or death following an apoptotic stimulus.

6,193 citations

Journal ArticleDOI
18 Dec 2014-Cell
TL;DR: In situ Hi-C is used to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types, identifying ∼10,000 loops that frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species.

5,945 citations

Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: The bax gene promoter region contains four motifs with homology to consensus p53-binding sites and wild-type but not mutant p53 protein bound to oligonucleotides corresponding to this region of the bax promoter, suggesting that bax is a p53 primary-response gene, presumably involved in a p 53-regulated pathway for induction of apoptosis.

4,150 citations

Journal ArticleDOI
TL;DR: The biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress, and to allow identification of factors that may modulate resistance to specific noxious chemicals.
Abstract: The glutathione S-transferases (GST) represent a major group of detoxification enzymes. All eukaryotic species possess multiple cytosolic and membrane-bound GST isoenzymes, each of which displays distinct catalytic as well as noncatalytic binding properties: the cytosolic enzymes are encoded by at least five distantly related gene families (designated class alpha, mu, pi, sigma, and theta GST), whereas the membrane-bound enzymes, microsomal GST and leukotriene C, synthetase, are encoded by single genes and both have arisen separately from the soluble GST. Evidence suggests that the level of expression of GST is a crucial factor in determining the sensitivity of cells to a broad spectrum of toxic chemicals. In this article the biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress.A description of the mechanisms of transcriptional and posttranscriptional regulat...

3,516 citations