scispace - formally typeset
Search or ask a question
Author

Elizabeth Humphreys

Bio: Elizabeth Humphreys is an academic researcher from International Rice Research Institute. The author has contributed to research in topics: Irrigation & Loam. The author has an hindex of 29, co-authored 76 publications receiving 3035 citations. Previous affiliations of Elizabeth Humphreys include Commonwealth Scientific and Industrial Research Organisation & Cooperative Research Centre.
Topics: Irrigation, Loam, Sowing, Mulch, Cropping system


Papers
More filters
Book ChapterDOI
TL;DR: The Comprehensive Assessment of Water Management in Agriculture (CA) seeks answers to the question of how freshwater resources can be developed and managed to feed the world's population and reduce poverty, while at the same time promoting environmental security.
Abstract: The Comprehensive Assessment of Water Management in Agriculture (CA) seeks answers to the question of how freshwater resources can be developed and managed to feed the world's population and reduce poverty, while at the same time promoting environmental security. The CA pays particular attention to rice as this crop is the most common staple food of the largest number of people on Earth (about 3 billion people) while receiving an estimated 24–30% of the world's developed freshwater resources. Rice environments also provide unique—but as yet poorly understood—ecosystem services such as the regulation of water and the preservation of aquatic and terrestrial biodiversity. Rice production under flooded conditions is highly sustainable. In comparison with other field crops, flooded rice fields produce more of the greenhouse gas methane but less nitrous oxide, have no to very little nitrate pollution of the groundwater, and use relatively little to no herbicides. Flooded rice can locally raise groundwater tables with subsequent risk of salinization if the groundwater carries salts, but is also an effective restoration crop to leach accumulated salts from the soil in combination with drainage. The production of rice needs to increase in the coming decades to meet the food demand of growing populations. To meet the dual challenges of producing enough food and alleviating poverty, more rice needs to be produced at a low cost per kilogram grain (ensuring reasonable profits for producers) so that prices can be kept low for poor consumers. This increase in rice production needs to be accomplished under increasing scarcity of water, which threatens the sustainability and capability to provide ecosystem services of current production systems. Water scarcity is expected to shift rice production to more water‐abundant delta areas, and to lead to crop diversification and more aerobic (nonflooded) soil conditions in rice fields in water‐short areas. In these latter areas, investments should target the adoption of water‐saving technologies, the reuse of drainage and percolation water, and the improvement of irrigation supply systems. A suite of water‐saving technologies can help farmers reduce percolation, drainage, and evaporation losses from their fields by 15–20% without a yield decline. However, greater understanding of the adverse effects of increasingly aerobic field conditions on the sustainability of rice production, environment, and ecosystem services is needed. In drought‐, salinity‐, and flood‐prone environments, the combination of improved varieties with specific management packages has the potential to increase on‐farm yields by 50–100% in the coming 10 years, provided that investment in research and extension is intensified.

525 citations

Book ChapterDOI
TL;DR: In this paper, the authors investigated the impact of different technologies on the productivity of the rice-wheat (RW) system in north-west India and found that the best technologies for achieving this are delaying rice transplanting and short duration rice varieties.
Abstract: Increasing the productivity of the rice–wheat (RW) system in north-west India is critical for the food security of India. However, yields are stagnating or declining, and the rate of groundwater use is not sustainable. Many improved technologies are under development for RW systems, with multiple objectives including increased production, improved soil fertility, greater input use efficiency, reduced environmental pollution, and higher profitability for farmers. There are large reductions in irrigation amount with many of these technologies compared with conventional practice, such as laser land leveling, alternate wetting and drying (AWD) water management in rice, delayed rice transplanting, shorter duration rice varieties, zero till wheat, raised beds, and replacing rice with other crops. However, the nature of the irrigation water savings has seldom been determined. It is often likely to be due to reduced deep drainage, with little effect on evapotranspiration (ET). Reducing deep drainage has major benefits, including reduced energy consumption to pump groundwater, nutrient loss by leaching, and groundwater pollution. The impacts of alternative technologies on deep drainage (and thus on irrigation water savings) vary greatly depending on site conditions, especially soil permeability, depth to the watertable, and water management. More than 90% of the major RW areas in north-west India are irrigated using groundwater. Here, reducing deep drainage will not “save water” nor reduce the rate of decline of the watertable. In these regions, it is critical that technologies that decrease ET and increase the amount of crop produced per amount of water lost as ET (i.e., crop water productivity, WPET) are implemented. The best technologies for achieving this are delaying rice transplanting and short duration rice varieties. The potential for replacing rice with other crops with lower ET is less clear.

270 citations

Journal ArticleDOI
TL;DR: In this article, the performance of the CERES-Rice and CE-Wheat models was evaluated using simulated and observed data on anthesis and maturity dates, in-season LAI and growth, final grain yield and its components, and soil water and N balances from published studies across Asia and Australia, and then by computing the statistical parameters for the major characters.

230 citations

Journal ArticleDOI
TL;DR: The Happy Seeder as discussed by the authors combines the stubble mulching and seed drilling functions in the one machine, which reduces air pollution and loss of nutrients and organic carbon due to burning, at the same time as maintaining or increasing yield.
Abstract: Lack of suitable machinery is a major constraint to direct drilling into combine-harvested rice residues due to the heavy straw load, and the presence of loose tough straw deposited by the harvester. Therefore, most rice stubbles are burnt in the mechanised rice–wheat systems of south Asia and Australia, as this is a rapid and cheap option, and allows for quick turn around between crops. As well as loss of organic matter and nutrients, rice stubble burning causes very serious and widespread air pollution in the north-west Indo-Gangetic Plains, where rice–wheat systems predominate. A novel approach with much promise is the Happy Seeder, which combines the stubble mulching and seed drilling functions in the one machine. The stubble is cut and picked up in front of the sowing tynes, which engage bare soil, and deposited behind the seed drill as mulch. Evaluation of the technology over 3 years in replicated experiments and farmers’ fields in Punjab, India, showed that establishment of wheat sown into rice residues with the Happy Seeder was comparable with establishment using conventional methods (straw burnt followed by direct drilling or cultivation before sowing) for sowings around the optimum time into stubbles up to 7.5 t/ha. For late sowings, plant density declined significantly at straw loads above 5 t/ha. The mulch also reduced weed biomass by ~60%, and reduced soil evaporation. Yield of wheat sown around the optimum time into rice residues, using the Happy Seeder, was comparable with or higher than yield after straw removal or burning, in replicated experiments and farmers’ fields, for straw loads up to 9 t/ha. In farmers’ fields there was an average yield increase of 9 and 11% in 2004–05 and 2005–06, respectively, compared with farmer practice. For sowings after the optimum time, yield declined significantly at straw loads greater than 7.5 t/ha. The Happy Seeder offers the means of drilling wheat into rice stubble without burning, eliminating air pollution and loss of nutrients and organic carbon due to burning, at the same time as maintaining or increasing yield.

184 citations

Journal ArticleDOI
TL;DR: In this paper, a field experiment was conducted to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR) with four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70kPa at 18-20 cm soil depth.

159 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Although yields continue to increase in many areas, it is found that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse, which underscores the challenge of meeting increasing global agricultural demands.
Abstract: In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

1,164 citations

Journal ArticleDOI
15 Jun 2010-Geoderma
TL;DR: In paddy soils, the management-induced, microbially mediated redox processes control the dynamics of soil minerals and soil organic matter, which are strongly related to the microbial accessibility of C and N, but also of Fe as discussed by the authors.

869 citations

Journal ArticleDOI
TL;DR: Water productivity is defined as the net return for a unit of water used as mentioned in this paper, and it is the amount of water that can be used to produce more food, income, better livelihoods and ecosystem services with less water.

694 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors suggested that a sustainable increase in rice production is achievable in China with the development of new technology through rice research, which can drive increased rice production in China.
Abstract: Rice production in China has more than tripled in the past five decades mainly due to increased grain yield rather than increased planting area. This increase has come from the development of high-yielding varieties and improved crop management practices such as nitrogen fertilization and irrigation. However, yield stagnation of rice has been observed in the past ten years in China. As its population rises, China will need to produce about 20% more rice by 2030 in order to meet its domestic needs if rice consumption per capita stays at the current level. This is not an easy task because several trends and problems in the Chinese rice production system constrain the sustainable increase in total rice production. Key trends include a decline in arable land, increasing water scarcity, global climate change, labor shortages, and increasing consumer demand for high-quality rice (which often comes from low-yielding varieties). The major problems confronting rice production in China are narrow genetic background, overuse of fertilizers and pesticides, breakdown of irrigation infrastructure, oversimplified crop management, and a weak extension system. Despite these challenges, good research strategies can drive increased rice production in China. These include the development of new rice varieties with high yield potential, improvement of resistances to major diseases and insects, and to major abiotic stresses such as drought and heat, and the establishment of integrated crop management. We believe that a sustainable increase in rice production is achievable in China with the development of new technology through rice research.

578 citations

Book ChapterDOI
TL;DR: In this article, the authors present an integrated package of technologies for dry-DSR, including the identification of rice traits associated with the attainment of optimum grain yield with dry seeding.
Abstract: Rice (Oryza sativa L.), a staple food for more than half of the world population, is commonly grown by transplanting seedlings into puddled soil (wet tillage) in Asia. This production system is labor-, water-, and energy-intensive and is becoming less profitable as these resources are becoming increasingly scarce. It also deteriorates the physical properties of soil, adversely affects the performance of succeeding upland crops, and contributes to methane emissions. These factors demand a major shift from puddled transplanting to direct seeding of rice (DSR) in irrigated rice ecosystems. Direct seeding (especially wet seeding) is widely adopted in some and is spreading to other Asian countries. However, combining dry seeding (Dry-DSR) with zero/reduced tillage (e.g., conservation agriculture (CA)) is gaining momentum as a pathway to address rising water and labor scarcity, and to enhance system sustainability. Published studies show various benefits from direct seeding compared with puddled transplanting, which typically include (1) similar yields; (2) savings in irrigation water, labor, and production costs; (3) higher net economic returns; and (4) a reduction in methane emissions. Despite these benefits, the yields have been variable in some regions, especially with dry seeding combined with reduced/zero tillage due to (1) uneven and poor crop stand, (2) poor weed control, (3) higher spikelet sterility, (4) crop lodging, and (5) poor knowledge of water and nutrient management. In addition, rice varieties currently used for DSR are primarily selected and bred for puddled transplanted rice. Risks associated with a shift from puddled transplanting to DSR include (1) a shift toward hard-to-control weed flora, (2) development of herbicide resistance in weeds, (3) evolution of weedy rice, (4) increases in soil-borne pathogens such as nematodes, (5) higher emissions of nitrous oxide—a potent greenhouse gas , and (6) nutrient disorders, especially N and micronutrients. The objectives of this chapter are to review (1) drivers of the shift from puddled transplanting to DSR; (2) overall crop performance, including resource-use efficiencies of DSR; and (3) lessons from countries where DSR has already been widely adopted. Based on the existing evidence, we present an integrated package of technologies for Dry-DSR, including the identification of rice traits associated with the attainment of optimum grain yield with Dry-DSR.

513 citations