scispace - formally typeset
Search or ask a question
Author

Elizabeth Mcleod

Bio: Elizabeth Mcleod is an academic researcher from The Nature Conservancy. The author has contributed to research in topics: Coral reef & Climate change. The author has an hindex of 26, co-authored 38 publications receiving 4607 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors identify key areas of uncertainty and specific actions needed to address them and identify the value of mangrove forests, seagrass beds, and salt marshes in sequestering carbon dioxide.
Abstract: Recent research has highlighted the valuable role that coastal and marine ecosystems play in sequestering carbon dioxide (CO(2)). The carbon (C) sequestered in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds, and salt marshes, has been termed blue carbon. Although their global area is one to two orders of magnitude smaller than that of terrestrial forests, the contribution of vegetated coastal habitats per unit area to long-term C sequestration is much greater, in part because of their efficiency in trapping suspended matter and associated organic C during tidal inundation. Despite the value of mangrove forests, seagrass beds, and salt marshes in sequestering C, and the other goods and services they provide, these systems are being lost at critical rates and action is urgently needed to prevent further degradation and loss. Recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration; however, it is necessary to improve scientific understanding of the underlying mechanisms that control C sequestration in these ecosystems. Here, we identify key areas of uncertainty and specific actions needed to address them.

2,313 citations

Journal ArticleDOI
TL;DR: In this article, the authors compile the best available information on marine protected area (MPA) network design and supplement it with specific recommendations for building resilience into these networks, providing guidance on size, spacing, shape, risk spreading, critical areas, connectivity, and maintaining ecosystem function to help MPA planners and managers design MPA networks that are more robust in the face of climate-change impacts.
Abstract: Principles for designing marine protected area (MPA) networks that address social, economic, and biological criteria are well established in the scientific literature. Climate change represents a new and serious threat to marine ecosystems, but, to date, few studies have specifically considered how to design MPA networks to be resilient to this emerging threat. Here, we compile the best available information on MPA network design and supplement it with specific recommendations for building resilience into these networks. We provide guidance on size, spacing, shape, risk spreading (representation and replication), critical areas, connectivity, and maintaining ecosystem function to help MPA planners and managers design MPA networks that are more robust in the face of climate-change impacts.

385 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze the scientific evidence regarding whether coral reefs, phytoplankton, kelp forests, and marine fauna are viable long-term carbon sinks and whether they can be managed for climate mitigation.
Abstract: The international scientific community is increasingly recognizing the role of natural systems in climate-change mitigation. While forests have historically been the primary focus of such efforts, coastal wetlands – particularly seagrasses, tidal marshes, and mangroves – are now considered important and effective long-term carbon sinks. However, some members of the coastal and marine policy and management community have been interested in expanding climate mitigation strategies to include other components within coastal and marine systems, such as coral reefs, phytoplankton, kelp forests, and marine fauna. We analyze the scientific evidence regarding whether these marine ecosystems and ecosystem components are viable long-term carbon sinks and whether they can be managed for climate mitigation. Our findings could assist decision makers and conservation practitioners in identifying which components of coastal and marine ecosystems should be prioritized in current climate mitigation strategies and policies.

293 citations

Journal ArticleDOI
29 Aug 2012-PLOS ONE
TL;DR: This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement and supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics.
Abstract: Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific literature for guidance on the multiple physical and biological factors that affect the ability of coral reefs to resist and recover from climate disturbance. Eleven key factors to inform decisions based on scaling scientific evidence and the achievability of quantifying the factors were identified. Factors important to resistance and recovery, which are important components of resilience, were not strongly related, and should be assessed independently. The abundance of resistant (heat-tolerant) coral species and past temperature variability were perceived to provide the greatest resistance to climate change, while coral recruitment rates, and macroalgae abundance were most influential in the recovery process. Based on the 11 key factors, we tested an evidence-based framework for climate change resilience in an Indonesian marine protected area. The results suggest our evidence-weighted framework improved upon existing un-weighted methods in terms of characterizing resilience and distinguishing priority sites. The evaluation supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics. This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement. There were few differences between scientists' perceptions of factor importance and the scientific evidence found in journal publications but more before and after impact studies will be required to fully test the validity of all the factors. The methods here will increase the feasibility and defensibility of including key resilience metrics in evaluations of coral reefs, as well as reduce costs. Adaptation, marine protected areas, priority setting, resistance, recovery.

283 citations

Book
01 Jan 2006
TL;DR: This publication provides a welcome reference for all stakeholders in mangroves, especially coastal communities, to assist them in encouraging decision makers to apply resilience principles in all development and conservation programmes.
Abstract: Building resilience into mangrove conservation plans requires an understanding of how mangroves will respond to climate changes, what factors help them survive these changes, and, consequently, which mangroves are most likely to survive these changes. This publication provides a welcome reference for all stakeholders in mangroves, especially coastal communities, to assist them in encouraging decision makers to apply resilience principles in all development and conservation programmes.

242 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify key areas of uncertainty and specific actions needed to address them and identify the value of mangrove forests, seagrass beds, and salt marshes in sequestering carbon dioxide.
Abstract: Recent research has highlighted the valuable role that coastal and marine ecosystems play in sequestering carbon dioxide (CO(2)). The carbon (C) sequestered in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds, and salt marshes, has been termed blue carbon. Although their global area is one to two orders of magnitude smaller than that of terrestrial forests, the contribution of vegetated coastal habitats per unit area to long-term C sequestration is much greater, in part because of their efficiency in trapping suspended matter and associated organic C during tidal inundation. Despite the value of mangrove forests, seagrass beds, and salt marshes in sequestering C, and the other goods and services they provide, these systems are being lost at critical rates and action is urgently needed to prevent further degradation and loss. Recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration; however, it is necessary to improve scientific understanding of the underlying mechanisms that control C sequestration in these ecosystems. Here, we identify key areas of uncertainty and specific actions needed to address them.

2,313 citations

01 Feb 2016

1,970 citations

Journal ArticleDOI
11 Mar 2015-PLOS ONE
TL;DR: This work combines spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development and highlights countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential.
Abstract: Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we identify needs for further research and scope for improvement in this kind of scenario-based exposure analysis.

1,604 citations