scispace - formally typeset
Search or ask a question
Author

Elizabeth P. Derryberry

Bio: Elizabeth P. Derryberry is an academic researcher from University of Tennessee. The author has contributed to research in topics: Population & Zebra finch. The author has an hindex of 27, co-authored 76 publications receiving 5088 citations. Previous affiliations of Elizabeth P. Derryberry include Houston Museum of Natural Science & Duke University.


Papers
More filters
Journal ArticleDOI
Erich D. Jarvis1, Siavash Mirarab2, Andre J. Aberer3, Bo Li4, Bo Li5, Bo Li6, Peter Houde7, Cai Li4, Cai Li6, Simon Y. W. Ho8, Brant C. Faircloth9, Benoit Nabholz, Jason T. Howard1, Alexander Suh10, Claudia C. Weber10, Rute R. da Fonseca11, Jianwen Li, Fang Zhang Zhang, Hui Li, Long Zhou, Nitish Narula12, Nitish Narula7, Liang Liu13, Ganesh Ganapathy1, Bastien Boussau, Shamsuzzoha Bayzid2, Volodymyr Zavidovych1, Sankar Subramanian14, Toni Gabaldón15, Salvador Capella-Gutierrez, Jaime Huerta-Cepas, Bhanu Rekepalli16, Bhanu Rekepalli17, Kasper Munch18, Mikkel H. Schierup18, Bent E. K. Lindow11, Wesley C. Warren19, David A. Ray, Richard E. Green20, Michael William Bruford21, Xiangjiang Zhan21, Xiangjiang Zhan22, Andrew Dixon, Shengbin Li5, Ning Li23, Yinhua Huang23, Elizabeth P. Derryberry24, Elizabeth P. Derryberry25, Mads F. Bertelsen26, Frederick H. Sheldon24, Robb T. Brumfield24, Claudio V. Mello27, Claudio V. Mello28, Peter V. Lovell27, Morgan Wirthlin27, Maria Paula Cruz Schneider28, Francisco Prosdocimi28, José Alfredo Samaniego11, Amhed Missael Vargas Velazquez11, Alonzo Alfaro-Núñez11, Paula F. Campos11, Bent O. Petersen29, Thomas Sicheritz-Pontén29, An Pas, Thomas L. Bailey, R. Paul Scofield30, Michael Bunce31, David M. Lambert14, Qi Zhou, Polina L. Perelman32, Amy C. Driskell33, Beth Shapiro20, Zijun Xiong, Yongli Zeng, Shiping Liu, Zhenyu Li, Binghang Liu, Kui Wu, Jin Xiao, Xiong Yinqi, Quiemei Zheng, Yong Zhang, Huanming Yang, Jian Wang, Linnéa Smeds10, Frank E. Rheindt34, Michael J. Braun35, Jon Fjeldså11, Ludovic Orlando11, F. Keith Barker4, Knud A. Jønsson4, Warren E. Johnson33, Klaus-Peter Koepfli33, Stephen J. O'Brien36, David Haussler, Oliver A. Ryder, Carsten Rahbek4, Eske Willerslev11, Gary R. Graves33, Gary R. Graves4, Travis C. Glenn13, John E. McCormack37, Dave Burt38, Hans Ellegren10, Per Alström, Scott V. Edwards39, Alexandros Stamatakis3, David P. Mindell40, Joel Cracraft4, Edward L. Braun41, Tandy Warnow42, Tandy Warnow2, Wang Jun, M. Thomas P. Gilbert31, M. Thomas P. Gilbert4, Guojie Zhang6, Guojie Zhang11 
12 Dec 2014-Science
TL;DR: A genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves recovered a highly resolved tree that confirms previously controversial sister or close relationships and identifies the first divergence in Neoaves, two groups the authors named Passerea and Columbea.
Abstract: To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

1,624 citations

Journal ArticleDOI
Guojie Zhang1, Guojie Zhang2, Cai Li2, Qiye Li2, Bo Li2, Denis M. Larkin3, Chul Hee Lee4, Jay F. Storz5, Agostinho Antunes6, Matthew J. Greenwold7, Robert W. Meredith8, Anders Ödeen9, Jie Cui10, Qi Zhou11, Luohao Xu2, Hailin Pan2, Zongji Wang12, Lijun Jin2, Pei Zhang2, Haofu Hu2, Wei Yang2, Jiang Hu2, Jin Xiao2, Zhikai Yang2, Yang Liu2, Qiaolin Xie2, Hao Yu2, Jinmin Lian2, Ping Wen2, Fang Zhang2, Hui Li2, Yongli Zeng2, Zijun Xiong2, Shiping Liu12, Long Zhou2, Zhiyong Huang2, Na An2, Jie Wang13, Qiumei Zheng2, Yingqi Xiong2, Guangbiao Wang2, Bo Wang2, Jingjing Wang2, Yu Fan14, Rute R. da Fonseca1, Alonzo Alfaro-Núñez1, Mikkel Schubert1, Ludovic Orlando1, Tobias Mourier1, Jason T. Howard15, Ganeshkumar Ganapathy15, Andreas R. Pfenning15, Osceola Whitney15, Miriam V. Rivas15, Erina Hara15, Julia Smith15, Marta Farré3, Jitendra Narayan16, Gancho T. Slavov16, Michael N Romanov17, Rui Borges6, João Paulo Machado6, Imran Khan6, Mark S. Springer18, John Gatesy18, Federico G. Hoffmann19, Juan C. Opazo20, Olle Håstad21, Roger H. Sawyer7, Heebal Kim4, Kyu-Won Kim4, Hyeon Jeong Kim4, Seoae Cho4, Ning Li22, Yinhua Huang22, Michael William Bruford23, Xiangjiang Zhan13, Andrew Dixon, Mads F. Bertelsen24, Elizabeth P. Derryberry25, Wesley C. Warren26, Richard K. Wilson26, Shengbin Li27, David A. Ray19, Richard E. Green28, Stephen J. O'Brien29, Darren K. Griffin17, Warren E. Johnson30, David Haussler28, Oliver A. Ryder, Eske Willerslev1, Gary R. Graves31, Per Alström21, Jon Fjeldså32, David P. Mindell33, Scott V. Edwards34, Edward L. Braun35, Carsten Rahbek32, David W. Burt36, Peter Houde37, Yong Zhang2, Huanming Yang38, Jian Wang2, Erich D. Jarvis15, M. Thomas P. Gilbert1, M. Thomas P. Gilbert39, Jun Wang 
12 Dec 2014-Science
TL;DR: This work explored bird macroevolution using full genomes from 48 avian species representing all major extant clades to reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
Abstract: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

872 citations

Journal ArticleDOI
20 Nov 2014-Nature
TL;DR: It is shown that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change, and the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix.
Abstract: Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.

457 citations

Journal ArticleDOI
TL;DR: It is proposed that the degree of fragmentation or permeability of the geographical setting together with the intermediate dispersal model are crucial in reconciling previous, often contradictory findings regarding the relationship between dispersal and diversification.
Abstract: Dispersal can stimulate speciation by facilitating geographical expansion across barriers or inhibit speciation by maintaining gene flow among populations. Therefore, the relationship between dispersal ability and speciation rates can be positive or negative. Furthermore, an ‘intermediate dispersal’ model that combines positive and negative effects predicts a unimodal relationship between dispersal and diversification. Because both dispersal ability and speciation rates are difficult to quantify, empirical evidence for the relationship between dispersal and diversification remains scarce. Using a surrogate for flight performance and a species-level DNA-based phylogeny of a large South American bird radiation (the Furnariidae), we found that lineages with higher dispersal ability experienced lower speciation rates. We propose that the degree of fragmentation or permeability of the geographical setting together with the intermediate dispersal model are crucial in reconciling previous, often contradictory findings regarding the relationship between dispersal and diversification.

282 citations

Journal ArticleDOI
TL;DR: It is found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution, suggesting that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations.
Abstract: Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI
TL;DR: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses that includes the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, and new output formats to facilitate interoperability with downstream software.
Abstract: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder.

3,445 citations

Journal ArticleDOI
TL;DR: The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.
Abstract: Massively parallel short-read sequencing technologies, coupled with powerful software platforms, are enabling investigators to analyse tens of thousands of genetic markers. This wealth of data is rapidly expanding and allowing biological questions to be addressed with unprecedented scope and precision. The sizes of the data sets are now posing significant data processing and analysis challenges. Here we describe an extension of the Stacks software package to efficiently use genotype-by-sequencing data for studies of populations of organisms. Stacks now produces core population genomic summary statistics and SNP-by-SNP statistical tests. These statistics can be analysed across a reference genome using a smoothed sliding window. Stacks also now provides several output formats for several commonly used downstream analysis packages. The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.

2,958 citations

Journal ArticleDOI
15 Nov 2012-Nature
TL;DR: It is found that birds have undergone a strong increase in diversification rate from about 50 million years ago to the near present, with a number of significant rate increases, both within songbirds and within other young and mostly temperate radiations including the waterfowl, gulls and woodpeckers.
Abstract: Current global patterns of biodiversity result from processes that operate over both space and time and thus require an integrated macroecological and macroevolutionary perspective. Molecular time trees have advanced our understanding of the tempo and mode of diversification and have identified remarkable adaptive radiations across the tree of life. However, incomplete joint phylogenetic and geographic sampling has limited broad-scale inference. Thus, the relative prevalence of rapid radiations and the importance of their geographic settings in shaping global biodiversity patterns remain unclear. Here we present, analyse and map the first complete dated phylogeny of all 9,993 extant species of birds, a widely studied group showing many unique adaptations. We find that birds have undergone a strong increase in diversification rate from about 50 million years ago to the near present. This acceleration is due to a number of significant rate increases, both within songbirds and within other young and mostly temperate radiations including the waterfowl, gulls and woodpeckers. Importantly, species characterized with very high past diversification rates are interspersed throughout the avian tree and across geographic space. Geographically, the major differences in diversification rates are hemispheric rather than latitudinal, with bird assemblages in Asia, North America and southern South America containing a disproportionate number of species from recent rapid radiations. The contribution of rapidly radiating lineages to both temporal diversification dynamics and spatial distributions of species diversity illustrates the benefits of an inclusive geographical and taxonomical perspective. Overall, whereas constituent clades may exhibit slowdowns, the adaptive zone into which modern birds have diversified since the Cretaceous may still offer opportunities for diversification.

2,660 citations

Journal Article
TL;DR: In this paper, a test based on two conserved CHD (chromo-helicase-DNA-binding) genes that are located on the avian sex chromosomes of all birds, with the possible exception of the ratites (ostriches, etc.).

2,554 citations