scispace - formally typeset
Search or ask a question
Author

Ellen A. Keiter

Bio: Ellen A. Keiter is an academic researcher from Eastern Illinois University. The author has contributed to research in topics: Phosphine & Isomerization. The author has an hindex of 9, co-authored 22 publications receiving 3075 citations.

Papers
More filters
Book
01 Jan 1972
TL;DR: In this article, inorganic chemistry principles of structure and reactivity are presented. But, they do not cover how to use these principles in the design of products, and they are not available in any type of product.
Abstract: INORGANIC CHEMISTRY PRINCIPLES OF STRUCTURE AND REACTIVITY JAMES E HUHEEY PDF Are you looking for Ebook inorganic chemistry principles of structure and reactivity james e huheey PDF ? You will be glad to know that right now inorganic chemistry principles of structure and reactivity james e huheey PDF is available on our online library. With our online resources, you can find inorganic chemistry principles of structure and reactivity james e huheey or just about any type of ebooks, for any type of product.

2,814 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the single pair of electrons on the dangling phosphine in 1 is oriented toward the W(CO)5 unit in the solid state, and 13C{1H} and 31P{ 1H} NMR data suggest that this conformation may also be dominant in solution.

20 citations

Journal ArticleDOI
TL;DR: In this paper, a simple interpretative scheme is presented to describe the deuterium quadrupole coupling constant and asymmetry parameter in a wide variety of chemical environments, and a simple interpretation scheme is used to describe a simple geometric model of the quadrupoles.
Abstract: A simple interpretative scheme is presented to describe the deuterium quadrupole coupling constant and asymmetry parameter in a wide variety of chemical environments.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the presence of metal ion dopants in the TiO_2 crystalline matrix significantly influences photoreactivity, charge carrier recombination rates, and interfacial electron-transfer rates.
Abstract: A systematic study of metal ion doping in quantum (Q)-sized (2-4 nm) TiO_2 colloids is performed by measuring their photoreactivities and the transient charge carrier recombination dynamics. The presence of metal ion dopants in the TiO_2 crystalline matrix significantly influences photoreactivity, charge carrier recombination rates, and interfacial electron-transfer rates. The photoreactivities of 21 metal ion-doped colloids are quantified in terms of both the conduction band electron reduction of an electron acceptor (CCl_4 dechlorination) and the valence band hole oxidation of an electron donor (CHCl_3 degradation). Doping with Fe^(3+), Mo^(5+), Ru^(3+), Os^(3+), Re^(5+), V^(4+), and Rh^(3+) at 0.1-0.5 at.% significantly increases the photoreactivity for both oxidation and reduction while Co^(3+) and Al^(3+) doping decreases the photoreactivity. The transient absorption signals upon laser flash photolysis (λ_(ex) = 355 nm) at λ = 600 nm are extended up to 50 ms for Fe^(3+)-, V^(4+)-, Mo^(5+)-, and Ru^(3+)-doped TiO_2 while the undoped Q-sized TiO_2 shows a complete "blue electron" signal decay within 200 μs. Co^(3+)- and Al^(3+)-doped TiO_2 are characterized by rapid signal decays with a complete loss of absorption signals within 5 μs. The quantum yields obtained during CW photolyses are quantitatively correlated with the measured transient absorption signals of the charge carriers. Photoreactivities are shown to increase with the relative concentration of trapped charge carriers. The photoreactivity of doped TiO_2 appears to be a complex function of the dopant concentration, the energy level of dopants within the TiO_2 lattice, their d electronic configuration, the distribution of dopants, the electron donor concentration, and the light intensity.

3,508 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art understanding of non-precious transition metal oxides that catalyze the oxygen reduction and evolution reactions is discussed, with an outlook on the opportunities in future research within this rapidly developing field.
Abstract: In this Review, we discuss the state-of-the-art understanding of non-precious transition metal oxides that catalyze the oxygen reduction and evolution reactions. Understanding and mastering the kinetics of oxygen electrocatalysis is instrumental to making use of photosynthesis, advancing solar fuels, fuel cells, electrolyzers, and metal–air batteries. We first present key insights, assumptions and limitations of well-known activity descriptors and reaction mechanisms in the past four decades. The turnover frequency of crystalline oxides as promising catalysts is also put into perspective with amorphous oxides and photosystem II. Particular attention is paid to electronic structure parameters that can potentially govern the adsorbate binding strength and thus provide simple rationales and design principles to predict new catalyst chemistries with enhanced activity. We share new perspective synthesizing mechanism and electronic descriptors developed from both molecular orbital and solid state band structure principles. We conclude with an outlook on the opportunities in future research within this rapidly developing field.

1,503 citations

Journal ArticleDOI
TL;DR: In this article, a new classification of heavy metals based on the periodic table is proposed, which should reflect our understanding of the chemical basis of toxicity and allow toxic effects to be predicted.
Abstract: Over the past two decades, the term "heavy metals" has been widely used. It is often used as a group name for metals and semimetals (metalloids) that have been associated with contamination and potential toxicity or ecotoxicity. At the same time, legal regulations often specify a list of "heavy metals" to which they apply. Such lists differ from one set of regulations to another and the term is sometimes used without even specifying which "heavy metals" are covered. However, there is no authoritative definition to be found in the relevant literature. There is a tendency, unsupported by the facts, to assume that all so-called "heavy metals" and their compounds has highly toxic or ecotoxic properties. This has no basis in chemical or toxicological data. Thus, the term "heavy metals'' is both meaningless and misleading. Even the term "metal" is commonly misused in both toxicological literature and in legislation to mean the pure metal and all the chemical species in which it may exist. This usage implies that the pure metal and all its compounds have the same physicochemical, biological, and toxicological properties, which is untrue. In order to avoid the use of the term "heavy metal", a new classification based on the periodic table is needed. Such a classification should reflect our understanding of the chemical basis of toxicity and allow toxic effects to be predicted.

1,160 citations

Journal ArticleDOI
TL;DR: In this article, a functional Taylor expansion of energy is used to introduce various energy derivatives of chemical significance, and a review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity.
Abstract: The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used mostly within semiempirical MO methods, Hartree–Fock, or post-Hartree–Fock methods. During the last decade, however, DFT has enabled theoretical chemistry to predict accurately structures and energetics of clusters and molecules. Therefore, more attention should also now be paid to these reactivity descriptors determined directly from DFT calculations. In this work, chemical reactivity is explored in DFT through a functional Taylor expansion of energy that introduces various energy derivatives of chemical significance. This review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity. Also, several perspectives are given. © 1999 John Wiley & Sons, Inc. J Comput Chem 20: 129–154, 1999

1,137 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the status quo of X-ray photoelectron spectroscopy with a historical perspective, provide the technique's operating principles, resolve myths associated with C 1s referencing, and offer a comprehensive account of recent findings.

1,108 citations