scispace - formally typeset
Search or ask a question
Author

Ellen Vermeulen

Bio: Ellen Vermeulen is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Antigen & Immunoglobulin G. The author has an hindex of 6, co-authored 7 publications receiving 1003 citations.

Papers
More filters
Journal ArticleDOI
14 Sep 2007-Science
TL;DR: IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.
Abstract: Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.

879 citations

Journal ArticleDOI
TL;DR: It is proposed that the IgG4-IgG4 Fc interaction resembles an intermediate of the Fab-arm (half-molecule) exchange reaction that is stabilized because one of the Igg4 molecules is coupled to a solid phase.
Abstract: The Fc fragment of IgG4 can interact with the Fc fragment of another IgG molecule. This interaction is a confounding factor when measuring IgG4 rheumatoid factor levels. Recently, we demonstrated that half-molecules of IgG4 can exchange to form a bispecific Ab. We expected these two phenomena to be related and investigated the physicochemical aspects of IgG4 Fc-Fc interactions. We found that IgG4 is >99% monomeric by size-exclusion chromatography; therefore, IgG4 Fc-Fc interactions in the fluid phase (if any) would be short-lived. However, 125I-labeled IgG4 does bind to IgG1 and IgG4 coupled to a solid phase. By contrast, IgG1 does not bind to coupled IgG4. Furthermore, conditions that induce partial unfolding/dissociation of the CH3 domains enhance IgG4 Fc binding, suggesting that Fc binding is primarily CH3 mediated. IgG4 slowly associates with both IgG4 and IgG1 coupled to a biosensor chip. Remarkably, subsequent dissociation was much faster for IgG4 than for IgG1. Moreover, after binding of an IgG4 mAb to Sepharose-coupled Ag, we observed additional binding of IgG4 with irrelevant specificity, whereas similar binding was not observed with Ag-bound IgG1. We propose that the IgG4-IgG4 Fc interaction resembles an intermediate of the Fab-arm (half-molecule) exchange reaction that is stabilized because one of the IgG4 molecules is coupled to a solid phase. By contrast, IgG4 Fc recognizes IgG1 only after a conformational change that renders CH3(IgG1) accessible to an interaction with the CH3(IgG4). Such Fc interactions may enhance Ag binding of IgG4 in vivo.

116 citations

Journal ArticleDOI
TL;DR: Deep immune profiling by multicolor flow cytometry and t-SNE analysis shows that the majority of cells induced to produce IL-10 co-express pro-inflammatory cytokines IL-6 and/or TNFα, suggesting that in vitro-inducedIL-10 producing B cells are not a dedicated subset of regulatory B cells.
Abstract: Regulatory B cells (Breg) have been described as a specific immunological subsets in several mouse models Identification of a human counterpart has remained troublesome, because unique plasma membrane markers or a defining transcription factor have not been identified Consequently, human Bregs are still primarily defined by production of IL-10 In this study, we sought to elucidate if in vitro-induced human IL-10 producing B cells are a dedicated immunological subset Using deep immune profiling by multicolor flow cytometry and t-SNE analysis, we show that the majority of cells induced to produce IL-10 co-express pro-inflammatory cytokines IL-6 and/or TNFα No combination of markers can be identified to define human IL-10+TNFα-IL-6- B cells and rather point to a general activated B cell phenotype Strikingly, upon culture and restimulation, a large proportion of formerly IL-10 producing B cells lose IL-10 expression, showing that induced IL-10 production is not a stable trait The combined features of an activated B cell phenotype, transient IL-10 expression and lack of subset-defining markers suggests that in vitro-induced IL-10 producing B cells are not a dedicated subset of regulatory B cells

36 citations

Journal ArticleDOI
TL;DR: This is the first study to show enhanced levels of polyclonal IgG4 to multiple antigens in Igg4-RD, which supports that elevated IgG 4 levels reflect an aberrant immunological regulation of the overall IgG3 response, but does not exclude that causality of disease could be antigen-driven.
Abstract: Background IgG4-related disease (IgG4-RD) is a systemic fibroinflammatory condition, characterised by an elevated serum IgG4 concentration and abundant IgG4-positive plasma cells in the involved organs. An important question is whether the elevated IgG4 response is causal or a reflection of immune-regulatory mechanisms of the disease. Objectives To investigate if the IgG4 response in IgG4-RD represents a generalised polyclonal amplification by examining the response to common environmental antigens. Methods Serum from 24 patients with IgG4-RD (14 treatment-naive, 10 treatment-experienced), 9 patients with primary sclerosing cholangitis and an elevated serum IgG4 (PSC-high IgG4), and 18 healthy controls were tested against egg white and yolk, milk, banana, cat, peanut, rice and wheat antigens by radioimmunoassay. Results We demonstrated an elevated polyclonal IgG4 response to multiple antigens in patients with IgG4-RD and in PSC-high IgG4, compared with healthy controls. There was a strong correlation between serum IgG4 and antigen-specific responses. Responses to antigens were higher in treatment-naive compared with treatment-experienced patients with IgG4-RD. Serum electrophoresis and immunofixation demonstrated polyclonality. Conclusions This is the first study to show enhanced levels of polyclonal IgG4 to multiple antigens in IgG4-RD. This supports that elevated IgG4 levels reflect an aberrant immunological regulation of the overall IgG4 response, but does not exclude that causality of disease could be antigen-driven.

34 citations


Cited by
More filters
Journal ArticleDOI

1,948 citations

Journal ArticleDOI
TL;DR: IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
Abstract: Of the five immunoglobulin isotypes, Immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3 and IgG4 which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptor (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or Antibody-dependent cell-mediated cytotoxicity (ADCC), and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc-receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function, will be the focus of the current review.

1,834 citations

Journal ArticleDOI
TL;DR: Immunoglobulins are heterodimeric proteins composed of 2 heavy and 2 light chains that can be separated functionally into variable domains that bind antigens and constant domains that specify effector functions, such as activation of complement or binding to Fc receptors.
Abstract: Immunoglobulins are heterodimeric proteins composed of 2 heavy and 2 light chains. They can be separated functionally into variable domains that bind antigens and constant domains that specify effector functions, such as activation of complement or binding to Fc receptors. The variable domains are created by means of a complex series of gene rearrangement events and can then be subjected to somatic hypermutation after exposure to antigen to allow affinity maturation. Each variable domain can be split into 3 regions of sequence variability termed the complementarity-determining regions (CDRs) and 4 regions of relatively constant sequence termed the framework regions. The 3 CDRs of the heavy chain are paired with the 3 CDRs of the light chain to form the antigen-binding site, as classically defined. The constant domains of the heavy chain can be switched to allow altered effector function while maintaining antigen specificity. There are 5 main classes of heavy chain constant domains. Each class defines the IgM, IgG, IgA, IgD, and IgE isotypes. IgG can be split into 4 subclasses, IgG1, IgG2, IgG3, and IgG4, each with its own biologic properties, and IgA can similarly be split into IgA1 and IgA2.

1,303 citations

Journal ArticleDOI
Andrew C. Chan1, Paul Carter1
TL;DR: How key insights obtained from the development of therapeutic antibodies complemented by newer antibody engineering technologies are delivering a second generation of therapeutic antibody with promise for greater clinical efficacy and safety is reviewed.
Abstract: The development of therapeutic antibodies has evolved over the past decade into a mainstay of therapeutic options for patients with autoimmune and inflammatory diseases. Substantial advances in understanding the biology of human diseases have been made and tremendous benefit to patients has been gained with the first generation of therapeutic antibodies. The lessons learnt from these antibodies have provided the foundation for the discovery and development of future therapeutic antibodies. Here we review how key insights obtained from the development of therapeutic antibodies complemented by newer antibody engineering technologies are delivering a second generation of therapeutic antibodies with promise for greater clinical efficacy and safety.

923 citations