scispace - formally typeset
Search or ask a question
Author

Ellen Zhou

Bio: Ellen Zhou is an academic researcher from Princeton University. The author has contributed to research in topics: Silicon photonics & Photonics. The author has an hindex of 5, co-authored 12 publications receiving 554 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: First observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks are reported, and a mathematical isomorphism between the silicon photonics circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis.
Abstract: Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using “neural compiler” to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

518 citations

Journal ArticleDOI
TL;DR: In this article, a recurrent silicon photonic neural network, in which connections are configured by microring weight banks, is presented and power consumption analysis for modulator-class neurons is derived.
Abstract: Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

154 citations

Journal ArticleDOI
TL;DR: By introducing a quantitative description of independent weighting, this work establishes performance tradeoffs between channel count and power penalty in microring weight banks, which are central to analog wavelength-division multiplexed processing networks in silicon.
Abstract: Microring weight banks could enable novel signal processing approaches in silicon photonics. We analyze factors limiting channel count in microring weight banks, which are central to analog wavelength-division multiplexed processing networks in silicon. We find that microring weight banks require a fundamentally different analysis compared to other wavelength-division multiplexing circuits (e.g., demultiplexers). By introducing a quantitative description of independent weighting, we establish performance tradeoffs between channel count and power penalty. This performance is significantly affected by coherent multiresonator interactions through bus waveguides. We experimentally demonstrate these effects in a fabricated device. Analysis relies on the development of a novel simulation technique combining parametric programming with generalized transmission theory. Experimental measurement fitting of an 8-channel weight bank is presented as an example of another application of the simulator.

123 citations

Posted Content
05 Nov 2016
TL;DR: First observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks are reported, which could access new regimes of ultrafast information processing for radio, control, and scientific computing.
Abstract: We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network programmed using an existing “neural compiler” to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We propose modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

15 citations

Proceedings ArticleDOI
11 Jul 2016
TL;DR: A 3 node recurrent photonic neural network that represents an early step towards network-based models of physical computing with integrated photonics.
Abstract: Silicon photonic integration could enable high-performance brain-inspired photonic processors. We demonstrate a 3 node recurrent photonic neural network. Cusp and Hopf bifurcations induced by synaptic reconfiguration are shown as proof-of-concept. The prototype represents an early step towards network-based models of physical computing with integrated photonics.

6 citations


Cited by
More filters
Journal ArticleDOI
08 May 2019-Nature
TL;DR: An optical version of a brain-inspired neurosynaptic system, using wavelength division multiplexing techniques, is presented that is capable of supervised and unsupervised learning.
Abstract: Software implementations of brain-inspired computing underlie many important computational tasks, from image processing to speech recognition, artificial intelligence and deep learning applications. Yet, unlike real neural tissue, traditional computing architectures physically separate the core computing functions of memory and processing, making fast, efficient and low-energy computing difficult to achieve. To overcome such limitations, an attractive alternative is to design hardware that mimics neurons and synapses. Such hardware, when connected in networks or neuromorphic systems, processes information in a way more analogous to brains. Here we present an all-optical version of such a neurosynaptic system, capable of supervised and unsupervised learning. We exploit wavelength division multiplexing techniques to implement a scalable circuit architecture for photonic neural networks, successfully demonstrating pattern recognition directly in the optical domain. Such photonic neurosynaptic networks promise access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data. An optical version of a brain-inspired neurosynaptic system, using wavelength division multiplexing techniques, is presented that is capable of supervised and unsupervised learning.

862 citations

Journal ArticleDOI
TL;DR: First observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks are reported, and a mathematical isomorphism between the silicon photonics circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis.
Abstract: Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using “neural compiler” to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

518 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.
Abstract: Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class of information processing machines. Algorithms running on such hardware have the potential to address the growing demand for machine learning and artificial intelligence in areas such as medical diagnosis, telecommunications, and high-performance and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, particularly related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complementary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges. Photonics offers an attractive platform for implementing neuromorphic computing due to its low latency, multiplexing capabilities and integrated on-chip technology.

480 citations

Journal ArticleDOI
TL;DR: Recent advances in integrated photonic neuromorphic neuromorphic systems are reviewed, current and future challenges are discussed, and the advances in science and technology needed to meet those challenges are outlined.
Abstract: Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class of information processing machines. Algorithms running on such hardware have the potential to address the growing demand for machine learning and artificial intelligence, in areas such as medical diagnosis, telecommunications, and high-performance and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, in particular, related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complementary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.

454 citations

Journal ArticleDOI
TL;DR: Recent progress in deep-learning-based photonic design is reviewed by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks.
Abstract: Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction. The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.

446 citations