scispace - formally typeset
Search or ask a question
Author

Ellina Kesselman

Bio: Ellina Kesselman is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Micelle & Liposome. The author has an hindex of 31, co-authored 78 publications receiving 4880 citations. Previous affiliations of Ellina Kesselman include Hebrew University of Jerusalem & Federal University of Technology Akure.


Papers
More filters
Journal ArticleDOI
01 Oct 2004-Science
TL;DR: By combining three mutually immiscible polymeric components in a mixed-arm star block terpolymer architecture, this work has observed the formation of a previously unknown class of multicompartment micelles in dilute aqueous solution.
Abstract: By combining three mutually immiscible polymeric components in a mixed-arm star block terpolymer architecture, we have observed the formation of a previously unknown class of multicompartment micelles in dilute aqueous solution. Connection of water-soluble poly(ethylene oxide) and two hydrophobic but immiscible components (a polymeric hydrocarbon and a perfluorinated polyether) at a common junction leads to molecular frustration when dispersed in aqueous solution. The incompatible hydrophobic blocks form cores that are protected from the water by the poly(ethylene oxide) blocks, but both are forced to make contact with the poly(ethylene oxide) by virtue of the chain architecture. The structures that emerge depend on the relative lengths of the blocks and can be tuned from discrete multicompartment micelles to extended wormlike structures with segmented cores.

886 citations

Journal ArticleDOI
TL;DR: It is shown that graphite spontaneously exfoliates into single-layer graphene in chlorosulphonic acid, and dissolves at isotropic concentrations as high as approximately 2 mg ml(-1), which is an order of magnitude higher than previously reported values.
Abstract: Graphene combines unique electronic properties and surprising quantum effects with outstanding thermal and mechanical properties. Many potential applications, including electronics and nanocomposites, require that graphene be dispersed and processed in a fluid phase. Here, we show that graphite spontaneously exfoliates into single-layer graphene in chlorosulphonic acid, and dissolves at isotropic concentrations as high as approximately 2 mg ml(-1), which is an order of magnitude higher than previously reported values. This occurs without the need for covalent functionalization, surfactant stabilization, or sonication, which can compromise the properties of graphene or reduce flake size. We also report spontaneous formation of liquid-crystalline phases at high concentrations ( approximately 20-30 mg ml(-1)). Transparent, conducting films are produced from these dispersions at 1,000 Omega square(-1) and approximately 80% transparency. High-concentration solutions, both isotropic and liquid crystalline, could be particularly useful for making flexible electronics as well as multifunctional fibres.

567 citations

Journal ArticleDOI
TL;DR: It is shown that single-walled nanotubes form true thermodynamic solutions in superacids, and the full phase diagram is reported, allowing the rational design of fluid-phase assembly processes for bottom-up assembly of nanot tubes and nanorods into functional materials.
Abstract: Translating the unique characteristics of individual single-walled carbon nanotubes into macroscopic materials such as fibres and sheets has been hindered by ineffective assembly. Fluid-phase assembly is particularly attractive, but the ability to dissolve nanotubes in solvents has eluded researchers for over a decade. Here, we show that single-walled nanotubes form true thermodynamic solutions in superacids, and report the full phase diagram, allowing the rational design of fluid-phase assembly processes. Single-walled nanotubes dissolve spontaneously in chlorosulphonic acid at weight concentrations of up to 0.5 wt%, 1,000 times higher than previously reported in other acids. At higher concentrations, they form liquid-crystal phases that can be readily processed into fibres and sheets of controlled morphology. These results lay the foundation for bottom-up assembly of nanotubes and nanorods into functional materials.

493 citations

Journal ArticleDOI
TL;DR: In this paper, the authors harnessed casein micelles for nano-encapsulation and stabilization of hydrophobic nutraceutical substances for enrichment of non-fat or low-fat food products.

488 citations

Journal ArticleDOI
TL;DR: This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.
Abstract: Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

229 citations


Cited by
More filters
Journal ArticleDOI
22 Jul 2010-ACS Nano
TL;DR: An improved method for the preparation of graphene oxide (GO) is described, finding that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process.
Abstract: An improved method for the preparation of graphene oxide (GO) is described. Currently, Hummers’ method (KMnO4, NaNO3, H2SO4) is the most common method used for preparing graphene oxide. We have found that excluding the NaNO3, increasing the amount of KMnO4, and performing the reaction in a 9:1 mixture of H2SO4/H3PO4 improves the efficiency of the oxidation process. This improved method provides a greater amount of hydrophilic oxidized graphene material as compared to Hummers’ method or Hummers’ method with additional KMnO4. Moreover, even though the GO produced by our method is more oxidized than that prepared by Hummers’ method, when both are reduced in the same chamber with hydrazine, chemically converted graphene (CCG) produced from this new method is equivalent in its electrical conductivity. In contrast to Hummers’ method, the new method does not generate toxic gas and the temperature is easily controlled. This improved synthesis of GO may be important for large-scale production of GO as well as the ...

9,812 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area, and when incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading.
Abstract: Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area. When incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading. We first review production routes to exfoliated graphite with an emphasis on top-down strategies starting from graphite oxide, including advantages and disadvantages of each method. Then solvent- and melt-based strategies to disperse chemically or thermally reduced graphene oxide in polymers are discussed. Analytical techniques for characterizing particle dimensions, surface characteristics, and dispersion in matrix polymers are also introduced. We summarize electrical, thermal, mechanical, and gas barrier properties of the graphene/polymer nanocomposites. We conclude this review listing current challenges associated with processing and scalability of graphene composites and future perspectives f...

2,979 citations

Journal ArticleDOI
TL;DR: The present tutorial review introduces the primary principles of BCP self-assembly in bulk and in solution by describing experiments, theories, accessible morphologies and morphological transitions, factors affecting the morphology, thermodynamics and kinetics, among others.
Abstract: Block copolymer (BCP) self-assembly has attracted considerable attention for many decades because it can yield ordered structures in a wide range of morphologies, including spheres, cylinders, bicontinuous structures, lamellae, vesicles, and many other complex or hierarchical assemblies. These aggregates provide potential or practical applications in many fields. The present tutorial review introduces the primary principles of BCP self-assembly in bulk and in solution, by describing experiments, theories, accessible morphologies and morphological transitions, factors affecting the morphology, thermodynamics and kinetics, among others. As one specific example at a more advanced level, BCP vesicles (polymersomes) and their potential applications are discussed in some detail.

2,631 citations