scispace - formally typeset
Search or ask a question
Author

Elsa Wagner-Rousset

Bio: Elsa Wagner-Rousset is an academic researcher from University of Strasbourg. The author has contributed to research in topics: Glycosylation & Monoclonal antibody. The author has an hindex of 19, co-authored 31 publications receiving 2136 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The present account reviews the glycosylation patterns observed for the current approved therapeutic antibodies produced in mammalian cell lines, details classical and state-of-the-art analytical methods used for the characterization of glycoforms and discusses the expected benefits of manipulating the carbohydrate components of antibodies by bio- or chemical engineering.
Abstract: Monoclonal antibodies (MAbs) are the fastest growing class of human pharmaceuticals. More than 20 MAbs have been approved and several hundreds are in clinical trials in various therapeutic indications including oncology, inflammatory diseases, organ transplantation, cardiology, viral infection, allergy, and tissue growth and repair. Most of the current therapeutic antibodies are humanized or human Immunoglobulins (IgGs) and are produced as recombinant glycoproteins in eukaryotic cells. Many alternative production systems and improved constructs are also being actively investigated. IgGs glycans represent only an average of around 3 % of the total mass of the molecule. Despite this low percentage, particular glycoforms are involved in essential immune effector functions. On the other hand, glycoforms that are not commonly biosynthesized in human may be allergenic, immunogenic and accelerate the plasmatic clearance of the linked antibody. These glyco-variants have to be identified, controlled and limited for therapeutic uses. Glycosylation depends on multiple factors like production system, selected clonal population, manufacturing process and may be genetically or chemically engineered. The present account reviews the glycosylation patterns observed for the current approved therapeutic antibodies produced in mammalian cell lines, details classical and state-of-the-art analytical methods used for the characterization of glycoforms and discusses the expected benefits of manipulating the carbohydrate components of antibodies by bio- or chemical engineering as well as the expected advantages of alternative biotechnological production systems developed for new generation of therapeutic antibodies and Fc-fusion proteins.

259 citations

Journal ArticleDOI
TL;DR: Asparagine deamidation in light chain complementarity determining region 1 of a humanized IgG1 monoclonal antibody is identified and both Asp and isoAsp are assigned, which were assigned by Edman degradation and byisoAsp detection using protein isoaspartate methyltransferase.

212 citations

Journal ArticleDOI
20 Jun 2013-mAbs
TL;DR: A case study of cetuximab, where a sequence error in the reported sequence of the light chain in databases and in publications is revealed, highlighting the potency of mass spectrometry to establish correct antibody sequences.
Abstract: The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab's glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products.

180 citations

Journal ArticleDOI
TL;DR: How native mass spectrometry and IM-MS can rapidly assess ADC structural heterogeneity and how easily these methods can be implemented into MS workflows for in-depth ADC analytical characterization are illustrated.
Abstract: Antibody drug conjugates (ADCs) are macromolecules composed of cytotoxic drugs covalently attached via a conditionally stable linker to monoclonal antibodies (mAbs). ADCs are among the most promising next generation of empowered mAbs foreseen to treat cancers. Compared to naked mAbs, ADCs have an increased level of complexity as the heterogeneity of conjugation cumulates with the inherent microvariability of the biomolecule. An increasing need underlying ADC’s development and optimization is to improve its analytical and bioanalytical characterization by assessing three main ADC quality attributes: drug distribution, amount of naked antibody, and average drug to antibody ratio (DAR). Here, the analytical potential of native mass spectrometry (MS) and native ion mobility MS (IM-MS) is compared to hydrophobic interaction chromatography (HIC), the reference method for quality control of interchain cysteinyl-linked ADCs. Brentuximab vedotin, first in class and gold standard, was chosen for a proof of principl...

141 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Strategies to select the best target antigens as well as suitable cytotoxic drugs; the design of optimized linkers; the discovery of bioorthogonal conjugation chemistries; and toxicity issues are discussed.
Abstract: Antibody-drug conjugates (ADCs) are one of the fastest growing classes of oncology therapeutics. After half a century of research, the approvals of brentuximab vedotin (in 2011) and trastuzumab emtansine (in 2013) have paved the way for ongoing clinical trials that are evaluating more than 60 further ADC candidates. The limited success of first-generation ADCs (developed in the early 2000s) informed strategies to bring second-generation ADCs to the market, which have higher levels of cytotoxic drug conjugation, lower levels of naked antibodies and more-stable linkers between the drug and the antibody. Furthermore, lessons learned during the past decade are now being used in the development of third-generation ADCs. In this Review, we discuss strategies to select the best target antigens as well as suitable cytotoxic drugs; the design of optimized linkers; the discovery of bioorthogonal conjugation chemistries; and toxicity issues. The selection and engineering of antibodies for site-specific drug conjugation, which will result in higher homogeneity and increased stability, as well as the quest for new conjugation chemistries and mechanisms of action, are priorities in ADC research.

1,363 citations

Journal ArticleDOI
TL;DR: Tastuzumab deruxtecan showed durable antitumor activity in a pretreated patient population with HER2-positive metastatic breast cancer and requires attention to pulmonary symptoms and careful monitoring.
Abstract: Background Trastuzumab deruxtecan (DS-8201) is an antibody-drug conjugate composed of an anti-HER2 (human epidermal growth factor receptor 2) antibody, a cleavable tetrapeptide-based linke...

961 citations

Journal ArticleDOI
TL;DR: Strategies to select the best therapeutic antigen targets, to optimize the structure of IgG antibodies and to design related or new structures with additional functions are discussed.
Abstract: Antibodies and related products are the fastest growing class of therapeutic agents. By analysing the regulatory approvals of IgG-based biotherapeutic agents in the past 10 years, we can gain insights into the successful strategies used by pharmaceutical companies so far to bring innovative drugs to the market. Many challenges will have to be faced in the next decade to bring more efficient and affordable antibody-based drugs to the clinic. Here, we discuss strategies to select the best therapeutic antigen targets, to optimize the structure of IgG antibodies and to design related or new structures with additional functions.

817 citations

Journal ArticleDOI
TL;DR: A draft genomic sequence of the CHO-K1 ancestral cell line is presented and it is discussed how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.
Abstract: Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns. Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.

759 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art industrial production processes, focusing on downstream technologies, for antibodies and antibody-related products are reviewed and future avenues for evolution are discussed.

536 citations