scispace - formally typeset
Search or ask a question
Author

Elvira Fiallo-Olivé

Bio: Elvira Fiallo-Olivé is an academic researcher from University of Málaga. The author has contributed to research in topics: Begomovirus & Plant virus. The author has an hindex of 18, co-authored 65 publications receiving 1913 citations. Previous affiliations of Elvira Fiallo-Olivé include University of Havana & Universidade Federal de Viçosa.


Papers
More filters
Journal ArticleDOI
TL;DR: Factors driving the emergence and establishment of whitefly-transmitted diseases include genetic changes in the virus through mutation and recombination, changes inThe vector populations coupled with polyphagy of the main vector, Bemisia tabaci, and long distance traffic of plant material or vector insects due to trade of vegetables and ornamental plants.
Abstract: Virus diseases that have emerged in the past two decades limit the production of important vegetable crops in tropical, subtropical, and temperate regions worldwide, and many of the causal viruses are transmitted by whiteflies (order Hemiptera, family Aleyrodidae). Most of these whitefly-transmitted viruses are begomoviruses (family Geminiviridae), although whiteflies are also vectors of criniviruses, ipomoviruses, torradoviruses, and some carlaviruses. Factors driving the emergence and establishment of whitefly-transmitted diseases include genetic changes in the virus through mutation and recombination, changes in the vector populations coupled with polyphagy of the main vector, Bemisia tabaci, and long distance traffic of plant material or vector insects due to trade of vegetables and ornamental plants. The role of humans in increasing the emergence of virus diseases is obvious, and the effect that climate change may have in the future is unclear.

732 citations

Journal ArticleDOI
TL;DR: Revised guidelines for the classification and nomenclature of begomoviruses are proposed and genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomviruses belonging to different species and strains, respectively.
Abstract: Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.

537 citations

Journal ArticleDOI
TL;DR: A divergent alphas satellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.
Abstract: Nanoviruses and geminiviruses are circular, single stranded DNA viruses that infect many plant species around the world. Nanoviruses and certain geminiviruses that belong to the Begomovirus and Mastrevirus genera are associated with additional circular, single stranded DNA molecules (~ 1-1.4 kb) that encode a replication-associated protein (Rep). These Rep-encoding satellite molecules are commonly referred to as alphasatellites and here we communicate the establishment of the family Alphasatellitidae to which these have been assigned. Within the Alphasatellitidae family two subfamilies, Geminialphasatellitinae and Nanoalphasatellitinae, have been established to respectively accommodate the geminivirus- and nanovirus-associated alphasatellites. Whereas the pairwise nucleotide sequence identity distribution of all the known geminialphasatellites (n = 628) displayed a troughs at ~ 70% and 88% pairwise identity, that of the known nanoalphasatellites (n = 54) had a troughs at ~ 67% and ~ 80% pairwise identity. We use these pairwise identity values as thresholds together with phylogenetic analyses to establish four genera and 43 species of geminialphasatellites and seven genera and 19 species of nanoalphasatellites. Furthermore, a divergent alphasatellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.

109 citations

Journal ArticleDOI
TL;DR: Evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from betasatellite and should be considered a separate class of satellites, for which the collective name deltasatellites is proposed.
Abstract: Begomoviruses (family Geminiviridae) are whitefly-transmitted, plant-infecting single-stranded DNA viruses that cause crop losses throughout the warmer parts of the World. Sweepoviruses are a phylogenetically distinct group of begomoviruses that infect plants of the family Convolvulaceae, including sweet potato (Ipomoea batatas). Two classes of subviral molecules are often associated with begomoviruses, particularly in the Old World; the betasatellites and the alphasatellites. An analysis of sweet potato and Ipomoea indica samples from Spain and Merremia dissecta samples from Venezuela identified small non-coding subviral molecules in association with several distinct sweepoviruses. The sequences of 18 clones were obtained and found to be structurally similar to tomato leaf curl virus–satellite (ToLCV-sat, the first DNA satellite identified in association with a begomovirus), with a region with significant sequence identity to the conserved region of betasatellites, an A-rich sequence, a predicted stem-loop structure containing the nonanucleotide TAATATTAC, and a second predicted stem-loop. These sweepovirus-associated satellites join an increasing number of ToLCV-sat-like non-coding satellites identified recently. Although sharing some features with betasatellites, evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from betasatellites and should be considered a separate class of satellites, for which the collective name deltasatellites is proposed.

98 citations

Journal ArticleDOI
TL;DR: It is confirmed that the begomoviruses found infecting zucchini in Spain are isolates of ToLCNDV, a bipartite begmovirus first reported from tomato, which also infects other solanaceous and cucurbitaceous crops in India and neighboring countries.
Abstract: In September 2012, a novel disease syndrome was observed in zucchini (Cucurbita pepo L.) crops in Murcia Province (southeastern Spain). Symptoms included curling, vein swelling, and severe mosaic in young leaves, short internodes, and fruit skin roughness, resembling begomovirus infection. Similar symptoms were observed in May 2013 in Almeria Province (southern Spain). DNA was isolated from 8 and 7 symptomatic leaf samples collected in Murcia and Almeria, respectively, and analyzed by PCR with primers GemCP-V-5' and GemCP-C-3' designed to detect begomoviruses by amplifying the core of coat protein gene (CP) (3). DNA fragments of the expected size (~600 bp) were amplified supporting a begomovirus infection. The DNA sequences obtained from four samples were identical. BLAST analysis showed the highest nucleotide identity (98%) with partial CP gene sequences from isolates of Tomato leaf curl New Delhi virus (ToLCNDV) infecting cucumber in India (GenBank Accession No. KC846817). ToLCNDV, a bipartite begomovirus first reported from tomato, also infects other solanaceous and cucurbitaceous crops in India and neighboring countries (1). DNA from two samples from Murcia and three from Almeria was used for rolling-circle amplification using ϕ29 DNA polymerase (TempliPhi kit, GE Healthcare, Little Chalfont, UK) and digested with a set of restriction endonucleases. All five samples yielded amplification products with identical restriction patterns. Two samples from Murcia (MU-8.1 and MU-11.1) and one from Almeria (AL-661) were selected to clone the putative DNA-A and DNA-B begomovirus genome components by using single BamHI or NcoI sites. Inserts of two clones from each sample, one corresponding to DNA-A and one to DNA-B, were completely sequenced. The cloned genomes exhibited the typical organization of Old World bipartite begomoviruses (1). Sequences were aligned with begomovirus sequences available in databases using MUSCLE and pairwise identity scores were calculated with SDT (species demarcation tool [4]). DNA-A sequences obtained from Murcia (2,738 nt, KF749224 and KF749225) and Almeria (2,738 nt, KF749223) shared >99% nucleotide identity, with the highest nucleotide identity (91.3 to 91.5%) with that of an Indian ToLCNDV isolate from chilli (HM007120). DNA-B sequences (2,684 nt, KF749226, KF749227, and KF749228) shared >99% nucleotide identity, and showed the highest nucleotide identity (83.1 to 83.3%) with that of a Pakistani ToLCNDV isolate from Solanum nigrum (AJ620188). Nucleotide sequence identity of DNA-A with the most closely related begomoviruses was above the 91% threshold for species demarcation (2), thus confirming that the begomoviruses found infecting zucchini in Spain are isolates of ToLCNDV. In fall 2013, the disease was widespread in zucchini both in Murcia and Almeria, and ToLCNDV has also been found infecting melon and cucumber crops. To our knowledge, this is the first report of a bipartite begomovirus in Spain and Europe. References: (1) J. K. Brown et al. Page 351 in: Virus Taxonomy. Ninth Report of the ICTV. A. M. Q. King et al., eds. Elsevier/Academic Press, London, 2012. (2) ICTV Geminiviridae Study Group. New species and revised taxonomy proposal for the genus Begomovirus (Geminiviridae). ICTV. Retrieved from http://talk.ictvonline.org/files/proposals/ taxonomy_proposals_plant1/m/plant04/4720.aspx , 10 October 2013. (3) H. Lecoq and C. Desbiez. Adv. Virus Res. 84:67, 2012. (4) B. Muhire et al. Arch. Virol. 158:1411, 2013.

86 citations


Cited by
More filters
Journal ArticleDOI
26 Sep 2014-PLOS ONE
TL;DR: Sequence Demarcation Tool (SDT) as discussed by the authors is a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences.
Abstract: The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV). There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT), a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms).

1,068 citations

Journal ArticleDOI
TL;DR: Factors driving the emergence and establishment of whitefly-transmitted diseases include genetic changes in the virus through mutation and recombination, changes inThe vector populations coupled with polyphagy of the main vector, Bemisia tabaci, and long distance traffic of plant material or vector insects due to trade of vegetables and ornamental plants.
Abstract: Virus diseases that have emerged in the past two decades limit the production of important vegetable crops in tropical, subtropical, and temperate regions worldwide, and many of the causal viruses are transmitted by whiteflies (order Hemiptera, family Aleyrodidae). Most of these whitefly-transmitted viruses are begomoviruses (family Geminiviridae), although whiteflies are also vectors of criniviruses, ipomoviruses, torradoviruses, and some carlaviruses. Factors driving the emergence and establishment of whitefly-transmitted diseases include genetic changes in the virus through mutation and recombination, changes in the vector populations coupled with polyphagy of the main vector, Bemisia tabaci, and long distance traffic of plant material or vector insects due to trade of vegetables and ornamental plants. The role of humans in increasing the emergence of virus diseases is obvious, and the effect that climate change may have in the future is unclear.

732 citations

Journal ArticleDOI
TL;DR: This Review describes the current knowledge of how geminiviruses interact with their plant hosts and the functional consequences of these interactions.
Abstract: The family Geminiviridae is one of the largest and most important families of plant viruses. The small, single-stranded DNA genomes of geminiviruses encode 5-7 proteins that redirect host machineries and processes to establish a productive infection. These interactions reprogramme plant cell cycle and transcriptional controls, inhibit cell death pathways, interfere with cell signalling and protein turnover, and suppress defence pathways. This Review describes our current knowledge of how geminiviruses interact with their plant hosts and the functional consequences of these interactions.

590 citations

Journal ArticleDOI
TL;DR: The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500–5200 bases causing economically important diseases in most tropical and subtropical regions of the world.
Abstract: The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500–5200 bases. Geminiviruses are transmitted by various types of insect (whiteflies, leafhoppers, treehoppers and aphids). Members of the genus Begomovirus are transmitted by whiteflies, those in the genera Becurtovirus, Curtovirus, Grablovirus, Mastrevirus and Turncurtovirus are transmitted by specific leafhoppers, the single member of the genus Topocuvirus is transmitted by a treehopper and one member of the genus Capulavirus is transmitted by an aphid. Geminiviruses are plant pathogens causing economically important diseases in most tropical and subtropical regions of the world. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Geminiviridae which is available at www.ictv.global/report/geminiviridae.

492 citations

01 Jan 2009
TL;DR: The genetic structure of an Antarctic lake viral community revealed unexpected genetic richness distributed across the highest number of viral families that have been found to date in aquatic viral metagenomes, in contrast to other known aquatic viromes.
Abstract: Shivering Viromes Despite its icy reputation, freshwater ponds and lakes do occur in Antarctica, and open freshwater can be found for a few brief weeks during the austral summer. The ecology of these lakes is, as expected, rather specialized to cope with the extreme seasonal conditions. In a metagenomic study, López-Bueno et al. (p. 858) inspected the virus community of Lake Limnopolar on Livingston Island and found an unexpectedly rich genetic diversity. A dominant group of previously unidentified single-stranded DNA viruses was found, and a striking shift after ice-melt in spring from single-stranded to double-stranded DNA viruses was observed, probably as their algal hosts started to bloom with increasing daylight hours. The diverse viruses may donate specialized genes that host organisms can also exploit to aid their survival under winter extremes of heat and light deprivation. Virus populations in polar freshwater lakes show marked shifts in composition during ice melt. Viruses are the most abundant biological entities and can control microbial communities, but their identity in terrestrial and freshwater Antarctic ecosystems is unknown. The genetic structure of an Antarctic lake viral community revealed unexpected genetic richness distributed across the highest number of viral families that have been found to date in aquatic viral metagenomes. In contrast to other known aquatic viromes, which are dominated by bacteriophage sequences, this Antarctic virus assemblage had a large proportion of sequences related to eukaryotic viruses, including phycodnaviruses and single-stranded DNA (ssDNA) viruses not previously identified in aquatic environments. We also observed that the transition from an ice-covered lake in spring to an open-water lake in summer led to a change from a ssDNA– to a double-stranded DNA–virus-dominated assemblage, possibly reflecting a seasonal shift in host organisms.

344 citations