scispace - formally typeset
Search or ask a question
Author

Emanuel P. Rivers

Bio: Emanuel P. Rivers is an academic researcher from Henry Ford Hospital. The author has contributed to research in topics: Septic shock & Sepsis. The author has an hindex of 54, co-authored 193 publications receiving 19493 citations. Previous affiliations of Emanuel P. Rivers include Edwards Lifesciences Corporation & Henry Ford Health System.


Papers
More filters
Journal ArticleDOI
TL;DR: This study randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit.
Abstract: Background Goal-directed therapy has been used for severe sepsis and septic shock in the intensive care unit. This approach involves adjustments of cardiac preload, afterload, and contractility to balance oxygen delivery with oxygen demand. The purpose of this study was to evaluate the efficacy of early goal-directed therapy before admission to the intensive care unit. Methods We randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. In-hospital mortality (the primary efficacy outcome), end points with respect to resuscitation, and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were obtained serially for 72 hours and compared between the study groups. Results Of the 263 enrolled patients, 130 were ...

8,811 citations

Journal ArticleDOI
TL;DR: Lactate clearance early in the hospital course may indicate a resolution of global tissue hypoxia and is associated with decreased mortality rate, and patients with higher lactate clearance after 6 hrs of emergency department intervention have improved outcome compared with those with lower lactate cleared.
Abstract: Objective: Serial lactate concentrations can be used to examine disease severity in the intensive care unit. This study examines the clinical utility of the lactate clearance before intensive care unit admission (during the most proximal period of disease presentation) as an indicator of outcome in severe sepsis and septic shock. We hypothesize that a high lactate clearance in 6 hrs is associated with decreased mortality rate. Design: Prospective observational study. Setting: An urban emergency department and intensive care unit over a 1-yr period. Patients: A convenience cohort of patients with severe sepsis or septic shock. Interventions: Therapy was initiated in the emergency department and continued in the intensive care unit, including central venous and arterial catheterization, antibiotics, fluid resuscitation, mechanical ventilation, vasopressors, and inotropes when appropriate. Measurements and Main Results: Vital signs, laboratory values, and Acute Physiology and Chronic Health Evaluation (APACHE) II score were obtained at hour 0 (emergency department presentation), hour 6, and over the first 72 hrs of hospitalization. Therapy given in the emergency department and intensive care unit was recorded. Lactate clearance was defined as the percent decrease in lactate from emergency department presentation to hour 6. Logistic regression analysis was performed to determine independent variables associated with mortality. One hundred and eleven patients were enrolled with mean age 64.9 16.7 yrs, emergency department length of stay 6.3 3.2 hrs, and overall in-hospital mortality rate 42.3%. Baseline APACHE II score was 20.2 6.8 and lactate 6.9 4.6 mmol/L. Survivors compared with nonsurvivors had a lactate clearance of 38.1 34.6 vs. 12.0 51.6%, respectively (p .005). Multivariate logistic regression analysis of statistically significant univariate variables showed lactate clearance to have a significant inverse relationship with mortality (p .04). There was an approximately 11% decrease likelihood of mortality for each 10% increase in lactate clearance. Patients with a lactate clearance >10%, relative to patients with a lactate clearance <10%, had a greater decrease in APACHE II score over the 72-hr study period and a lower 60-day mortality rate (p .007). Conclusions: Lactate clearance early in the hospital course may indicate a resolution of global tissue hypoxia and is associated with decreased mortality rate. Patients with higher lactate clearance after 6 hrs of emergency department intervention have improved outcome compared with those with lower lactate clearance. (Crit Care Med 2004; 32:1637‐1642)

999 citations

Journal ArticleDOI
23 Feb 1990-JAMA
TL;DR: Of variables measured, maximal CPP was most predictive of ROSC, and all CPP measurements were more predictive than was aortic pressure alone, substantiates animal data that indicate the importance of CPP during cardiopulmonary resuscitation.
Abstract: Coronary perfusion pressure (CPP), the aortic-to-right atrial pressure gradient during the relaxation phase of cardiopulmonary resuscitation, was measured in 100 patients with cardiac arrest. Coronary perfusion pressure and other variables were compared in patients with and without return of spontaneous circulation (ROSC). Twenty-four patients had ROSC. Initial CPP (mean±SD) was 1.6 ± 8.5 mm Hg in patients without ROSC and 13.4 ± 8.5 mm Hg in those with ROSC. The maximal CPP measured was 8.4 ±10.0 mm Hg in those without ROSC and 25.6 ±7.7 mm Hg in those with ROSC. Differences were also found for the maximal aortic relaxation pressure, the compression-phase aortic-to— right atrial gradient, and the arterial Po 2 . No patient with an initial CPP less than 0 mm Hg had ROSC. Only patients with maximal CPPs of 15 mm Hg or more had ROSC, and the fraction of patients with ROSC increased as the maximal CPP increased. A CPP above 15 mm Hg did not guarantee ROSC, however, as 18 patients whose CPPs were 15 mm Hg or greater did not resuscitate. Of variables measured, maximal CPP was most predictive of ROSC, and all CPP measurements were more predictive than was aortic pressure alone. The study substantiates animal data that indicate the importance of CPP during cardiopulmonary resuscitation. ( JAMA . 1990;263:1106-1113)

925 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to describe how ED overcrowding threatens patient safety and public health, and to explore the complex causes and potential solutions for the overcrowding crisis.
Abstract: Numerous reports have questioned the ability of United States emergency departments to handle the increasing demand for emergency services. Emergency department (ED) overcrowding is widespread in US cities and has reportedly reached crisis proportions. The purpose of this review is to describe how ED overcrowding threatens patient safety and public health, and to explore the complex causes and potential solutions for the overcrowding crisis. A review of the literature from 1990 to 2002 identified by a search of the Medline database was performed. Additional sources were selected from the references of the articles identified. There were four key findings. (1) The ED is a vital component of America's health care "safety net". (2) Overcrowding in ED treatment areas threatens public health by compromising patient safety and jeopardising the reliability of the entire US emergency care system. (3) Although the causes of ED overcrowding are complex, the main cause is inadequate inpatient capacity for a patient population with an increasing severity of illness. (4) Potential solutions for ED overcrowding will require multidisciplinary system-wide support.

753 citations

Journal ArticleDOI
TL;DR: A molecular signature, derived from integrated analysis of clinical data, the metabolome, and the proteome in prospective human studies, improved the prediction of death in patients with sepsis, potentially identifying a subset of patients who merit intensive treatment.
Abstract: Sepsis is a common cause of death, but outcomes in individual patients are difficult to predict. Elucidating the molecular processes that differ between sepsis patients who survive and those who die may permit more appropriate treatments to be deployed. We examined the clinical features and the plasma metabolome and proteome of patients with and without community-acquired sepsis, upon their arrival at hospital emergency departments and 24 hours later. The metabolomes and proteomes of patients at hospital admittance who would ultimately die differed markedly from those of patients who would survive. The different profiles of proteins and metabolites clustered into the following groups: fatty acid transport and β-oxidation, gluconeogenesis, and the citric acid cycle. They differed consistently among several sets of patients, and diverged more as death approached. In contrast, the metabolomes and proteomes of surviving patients with mild sepsis did not differ from survivors with severe sepsis or septic shock. An algorithm derived from clinical features together with measurements of five metabolites predicted patient survival. This algorithm may help to guide the treatment of individual patients with sepsis.

396 citations


Cited by
More filters
Journal ArticleDOI
23 Feb 2016-JAMA
TL;DR: The task force concluded the term severe sepsis was redundant and updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsi or at risk of developing sepsic shock.
Abstract: Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. Objective To evaluate and, as needed, update definitions for sepsis and septic shock. Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

14,699 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: This study randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit.
Abstract: Background Goal-directed therapy has been used for severe sepsis and septic shock in the intensive care unit. This approach involves adjustments of cardiac preload, afterload, and contractility to balance oxygen delivery with oxygen demand. The purpose of this study was to evaluate the efficacy of early goal-directed therapy before admission to the intensive care unit. Methods We randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. In-hospital mortality (the primary efficacy outcome), end points with respect to resuscitation, and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were obtained serially for 72 hours and compared between the study groups. Results Of the 263 enrolled patients, 130 were ...

8,811 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment ofAKI.
Abstract: tion’, implying that most patients ‘should’ receive a particular action. In contrast, level 2 guidelines are essentially ‘suggestions’ and are deemed to be ‘weak’ or discretionary, recognising that management decisions may vary in different clinical contexts. Each recommendation was further graded from A to D by the quality of evidence underpinning them, with grade A referring to a high quality of evidence whilst grade D recognised a ‘very low’ evidence base. The overall strength and quality of the supporting evidence is summarised in table 1 . The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment of AKI. The full summary of clinical practice statements is available at www.kdigo.org, but a few key recommendation statements will be highlighted here.

6,247 citations