scispace - formally typeset
Search or ask a question
Author

Emanuele Persichetti

Bio: Emanuele Persichetti is an academic researcher from University of Perugia. The author has contributed to research in topics: Cathepsin D & Gene. The author has an hindex of 14, co-authored 21 publications receiving 938 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate the possibility of detecting lysosomal dysfunction in CSF and further support the need to combine different biomarkers for improving the diagnostic accuracy of PD.
Abstract: To assess the discriminating power of multiple cerebrospinal fluid (CSF) biomarkers for Parkinson's disease (PD), we measured several proteins playing an important role in the disease pathogenesis. The activities of β-glucocerebrosidase and other lysosomal enzymes, together with total and oligomeric α-synuclein, and total and phosphorylated tau, were thus assessed in CSF of 71 PD patients and compared to 45 neurological controls. Activities of β-glucocerebrosidase, β-mannosidase, β-hexosaminidase, and β-galactosidase were measured with established enzymatic assays, while α-synuclein and tau biomarkers were evaluated with immunoassays. A subset of PD patients (n = 44) was also screened for mutations in the β-glucocerebrosidase-encoding gene (GBA1). In the PD group, β-glucocerebrosidase activity was reduced (P < 0.05) and patients at earlier stages showed lower enzymatic activity (P < 0.05); conversely, β-hexosaminidase activity was significantly increased (P < 0.05). Eight PD patients (18%) presented GBA1 sequence variations; 3 of them were heterozygous for the N370S mutation. Levels of total α-synuclein were significantly reduced (P < 0.05) in PD, in contrast to increased levels of α-synuclein oligomers, with a higher oligomeric/total α-synuclein ratio in PD patients when compared with controls (P < 0.001). A combination of β-glucocerebrosidase activity, oligomeric/total α-synuclein ratio, and age gave the best performance in discriminating PD from neurological controls (sensitivity 82%; specificity 71%, area under the receiver operating characteristic curve = 0.87). These results demonstrate the possibility of detecting lysosomal dysfunction in CSF and further support the need to combine different biomarkers for improving the diagnostic accuracy of PD.

205 citations

Journal ArticleDOI
TL;DR: Evidence from numerous studies that have focused on identification of candidate CSF biomarkers for Parkinson disease support the usefulness of a combination of various CSf biomarkers of PD to increase diagnostic accuracy during early phases of the disease, and to differentiate PD from other neurodegenerative disorders.
Abstract: Clinical diagnosis of Parkinson disease (PD) is difficult in early stages of disease, with high risk of misdiagnosis. The long preclinical phase of PD provides the possibility for early therapeutic intervention once disease-modifying therapies have been developed, but lack of biomarkers for early diagnosis and monitoring of disease progression represents a major obstacle to achievement of this goal. Accordingly, research efforts aimed at identification of novel biomarkers have been increasing in the past 5 years. Cerebrospinal fluid (CSF) is an accessible source of brain-derived proteins, which mirror molecular changes that take place in the CNS. In this Review, we discuss evidence from numerous studies that have focused on identification of candidate CSF biomarkers for PD. Notably, molecular pathways related to α-synuclein, tau and β-amyloid peptides have received considerable attention. CSF levels of the protein DJ-1 are also of interest, although further investigation of this candidate marker is required. These studies support the usefulness of a combination of various CSF biomarkers of PD to increase diagnostic accuracy during early phases of the disease, and to differentiate PD from other neurodegenerative disorders.

189 citations

Journal ArticleDOI
TL;DR: The high level of lysosomal enzymes activity observed in substantia nigra, together with the selective reduction of GCase in PD and DLB patients, further support the link between lysOSomal dysfunction and PD pathogenesis, favoring the possible role ofGCase as biomarker of synucleinopathy.
Abstract: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson’s disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for PD. Recently, GCase activity has been shown to be decreased in substantia nigra and in cerebrospinal fluid of patients diagnosed with PD or dementia with Lewy Bodies (DLB). Here we measured the activity of GCase and other endo-lysosomal enzymes in different brain regions (frontal cortex, caudate, hippocampus, substantia nigra, cerebellum) from PD (n = 26), DLB (n = 16) and age-matched control (n = 13) subjects, screened for GBA mutations. The relative changes in GCase gene expression in substantia nigra were also quantified by real-time PCR. The role of potential confounders (age, sex and post-mortem delay) was also determined. Substantia nigra showed a high activity level for almost all the lysosomal enzymes assessed. GCase activity was significantly decreased in the caudate (−23%) and substantia nigra (−12%) of the PD group; the same trend was observed in DLB. In both groups, a decrease in GCase mRNA was documented in substantia nigra. No other lysosomal hydrolase defects were determined. The high level of lysosomal enzymes activity observed in substantia nigra, together with the selective reduction of GCase in PD and DLB patients, further support the link between lysosomal dysfunction and PD pathogenesis, favoring the possible role of GCase as biomarker of synucleinopathy. Mapping the lysosomal enzyme activities across different brain areas can further contribute to the understanding of the role of lysosomal derangement in PD and other synucleinopathies.

123 citations

Journal ArticleDOI
TL;DR: It is indicated that in PD several lysosomal hydrolases have decreased activities, further supporting a possible link between pathophysiological mechanisms underlying PD and lysOSomal hydrosidases.
Abstract: Recent studies have shown a genetic association between glucocerebrosidase deficiencies and Parkinson's disease (PD). To further explore this issue the activity of beta-glucocerebrosidase and the activities of other lysosomal enzymes, alpha-mannosidase, beta-mannosidase, beta-hexosaminidase, and beta-galactosidase have been evaluated in the cerebrospinal fluid (CSF) of PD patients. The activities of alpha-mannosidase, beta-mannosidase, beta-glucocerebrosidase, and beta-hexosaminidase were substantially decreased in the CSF of PD patients, while levels of beta-galactosidase were essentially identical to controls. This study indicates that in PD several lysosomal hydrolases have decreased activities, further supporting a possible link between pathophysiological mechanisms underlying PD and lysosomal hydrolases.

109 citations

Journal ArticleDOI
TL;DR: The activity of a number of endolysosomal enzymes is changed in CSF from PD patients compared with healthy controls, supporting the alleged role of the endolySosomal pathway in PD pathogenesis.
Abstract: Parkinson's disease (PD) is characterized neuropathologically by the cytoplasmic accumulation of misfolded α-synuclein in specific brain regions. The endolysosomal pathway appears to be involved in α-synuclein degradation and, thus, may be relevant to PD pathogenesis. This assumption is further strengthened by the association between PD and mutations in the gene encoding for the lysosomal hydrolase glucocerebrosidase. The objective of the present study was to determine whether endolysosomal enzyme activities in cerebrospinal fluid (CSF) differ between PD patients and healthy controls. Activity levels of 6 lysosomal enzymes (β-hexosaminidase, α-fucosidase, β-mannosidase, β-galactosidase, β-glucocerebrosidase, and cathepsin D) and 1 endosomal enzyme (cathepsin E) were measured in CSF from 58 patients with PD (Hoehn and Yahr stages 1-3) and 52 age-matched healthy controls. Enzyme activity levels were normalized against total protein levels. Normalized cathepsin E and β-galactosidase activity levels were significantly higher in PD patients compared with controls, whereas normalized α-fucosidase activity was reduced. Other endolysosomal enzyme activity levels, including β-glucocerebrosidase activity, did not differ significantly between PD patients and controls. A combination of normalized α-fucosidase and β-galactosidase discriminated best between PD patients and controls with sensitivity and specificity values of 63%. In conclusion, the activity of a number of endolysosomal enzymes is changed in CSF from PD patients compared with healthy controls, supporting the alleged role of the endolysosomal pathway in PD pathogenesis. The usefulness of CSF endolysosomal enzyme activity levels as PD biomarkers, either alone or in combination with other markers, remains to be established in future studies.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Overall, the frequency of MPS varies for each population due to differences in ethnic backgrounds and/or founder effects that affect the birth prevalence of each type of M PS, as seen for other rare genetic diseases.

996 citations

Journal ArticleDOI
TL;DR: The antioxidant mechanisms of probiotics have been reviewed in terms of their able to improve the antioxidant system and their ability to decrease radical generation.
Abstract: Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated

494 citations

Journal ArticleDOI
TL;DR: Clinical and genetic information of 5 Japanese patients with Bardet-Biedl syndrome is summarized and it is found that rare liver fibrosis was detected in two patients, while only two patients had renal dysfunction, thought to be a universal symptom.

456 citations

Journal ArticleDOI
TL;DR: Induced pluripotent stem cells are generated from subjects with GD and PD harbouring GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration are provided.
Abstract: Mutations in the acid β-glucocerebrosidase (GBA1) gene, responsible for the lysosomal storage disorder Gaucher's disease (GD), are the strongest genetic risk factor for Parkinson's disease (PD) known to date. Here we generate induced pluripotent stem cells from subjects with GD and PD harbouring GBA1 mutations, and differentiate them into midbrain dopaminergic neurons followed by enrichment using fluorescence-activated cell sorting. Neurons show a reduction in glucocerebrosidase activity and protein levels, increase in glucosylceramide and α-synuclein levels as well as autophagic and lysosomal defects. Quantitative proteomic profiling reveals an increase of the neuronal calcium-binding protein 2 (NECAB2) in diseased neurons. Mutant neurons show a dysregulation of calcium homeostasis and increased vulnerability to stress responses involving elevation of cytosolic calcium. Importantly, correction of the mutations rescues such pathological phenotypes. These findings provide evidence for a link between GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration.

420 citations

Journal ArticleDOI
18 May 2016-Neuron
TL;DR: A synthetic overview of cell-autonomous mechanisms that are likely to participate in DA cell death in both sporadic and inherited forms of the disease is presented and it is shown how these mechanisms may mutually cooperate to promote neuronal death.

418 citations