scispace - formally typeset
Search or ask a question
Author

Emil Roduner

Bio: Emil Roduner is an academic researcher from University of Pretoria. The author has contributed to research in topics: Muonium & Muon spin spectroscopy. The author has an hindex of 36, co-authored 267 publications receiving 7202 citations. Previous affiliations of Emil Roduner include University of Stuttgart & Indian Institute of Technology Bombay.


Papers
More filters
Journal ArticleDOI
TL;DR: The present tutorial review intends to explain the origin of this special behaviour of nanomaterials, where gold ceases to be noble, and 2-3 nm nanoparticles are excellent catalysts which also exhibit considerable magnetism.
Abstract: Gold is known as a shiny, yellow noble metal that does not tarnish, has a face centred cubic structure, is non-magnetic and melts at 1336 K. However, a small sample of the same gold is quite different, providing it is tiny enough: 10 nm particles absorb green light and thus appear red. The meltingtemperature decreases dramatically as the size goes down. Moreover, gold ceases to be noble, and 2–3 nm nanoparticles are excellent catalysts which also exhibit considerable magnetism. At this size they are still metallic, but smaller ones turn into insulators. Their equilibrium structure changes to icosahedral symmetry, or they are even hollow or planar, depending on size. The present tutorial review intends to explain the origin of this special behaviour of nanomaterials.

1,852 citations

Journal ArticleDOI
TL;DR: In this article, photolysis of photosynthetic aromatic rings was employed as the source of hydroxyl radicals, and a detailed investigation of the pH profile was carried out for p-toluenesulfonic acid.
Abstract: In order to predict hydroxy radical initiated degradation of new proton conducting polymer membranes based on polystyrene, polyethersulfone, polyetheretherketone, or on polymers obtained by radiation grafting of styrene on different fluoropolymers, eight sulfonated aromatics were chosen as model compounds for EPR experiments, aiming at the identification of products of HO/ radical reactions with these polymers. Photolysis of H 2 O 2 was employed as the source of hydroxyl radicals. A detailed investigation of the pH profile was carried out for p-toluenesulfonic acid. Besides benzyl- and hydroxy-cyclohexadienyl radicals at lower pH values, phenoxyl radicals were identified, predominating in the pH range 10.5-13.0. A large number of new radicals give evidence of multiple hydroxylation of the aromatic rings, confirming reaction mechanisms proposed on the grounds of product analysis, but no evidence of dimerisation was found. The result as regards stability of organic proton exchange membranes for fuel cells is, that all unsaturated bonds and weakly bound atoms are subject to immediate attack by HO/. Ether links open by HO/ ipso addition. Strategies for the reduction of membrane degradation should focus on a minimisation of HO/ formation and of its access to the interior of the membrane.

288 citations

Journal ArticleDOI
TL;DR: Theoretical work on catalyst precursors, resting states, and elementary steps, as well as model reactions complemented by spectroscopic studies provide detailed insight into the molecular mechanisms of oxidation catalyses and pave the way for preparative applications.
Abstract: Although catalytic reductions, cross-couplings, metathesis, and oxidation of CC double bonds are well established, the corresponding catalytic hydroxylations of CH bonds in alkanes, arenes, or benzylic (allylic) positions, particularly with O2, the cheapest, “greenest”, and most abundant oxidant, are severely lacking. Certainly, some promising examples in homogenous and heterogenous catalysis exist, as well as enzymes that can perform catalytic aerobic oxidations on various substrates, but these have never achieved an industrial-scale, owing to a low space-time-yield and poor stability. This review illustrates recent advances in aerobic oxidation catalysis by discussing selected examples, and aims to stimulate further exciting work in this area. Theoretical work on catalyst precursors, resting states, and elementary steps, as well as model reactions complemented by spectroscopic studies provide detailed insight into the molecular mechanisms of oxidation catalyses and pave the way for preparative applications. However, O2 also poses a safety hazard, especially when used for large scale reactions, therefore sophisticated methodologies have been developed to minimize these risks and to allow convenient transfer onto industrial scale.

225 citations

Journal ArticleDOI
TL;DR: A new laccase gene (cotA) was cloned from Bacillus licheniformis and expressed in Escherichia coli and showed spectroscopic properties, typical for blue multi-copper oxidases, and highest activity of CotA was found towards sinapic acid.
Abstract: A new laccase gene (cotA) was cloned from Bacillus licheniformis and expressed in Escherichia coli. The recombinant protein CotA was purified and showed spectroscopic properties, typical for blue multi-copper oxidases. The enzyme has a molecular weight of ~65 kDa and demonstrates activity towards canonical laccase substrates 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). Kinetic constants K M and k cat for ABTS were of 6.5 ± 0.2 μM and 83 s−1, for SGZ of 4.3 ± 0.2 μM and 100 s−1, and for 2,6-DMP of 56.7 ± 1.0 μM and 28 s−1. Highest oxidizing activity towards ABTS was obtained at 85°C. However, after 1 h incubation of CotA at 70°C and 80°C, a residual activity of 43% and 8%, respectively, was measured. Furthermore, oxidation of several phenolic acids and one non-phenolic acid by CotA was investigated. CotA failed to oxidize coumaric acid, cinnamic acid, and vanillic acid, while syringic acid was oxidized to 2,6-dimethoxy-1,4-benzoquinone. Additionally, dimerization of sinapic acid, caffeic acid, and ferulic acid by CotA was observed, and highest activity of CotA was found towards sinapic acid.

220 citations

Book
12 Sep 2006
TL;DR: In this article, the effects of dimensionality and symmetry in quantum structures and coordination numbers of small clusters of nanoparticles have been investigated and the consequences of the range of the radial potential energy function have been discussed.
Abstract: 1: Introduction 1.1: Clusters and nanoparticles 1.2: Feynman's vision 2: Bulk and interface 2.1: Gradients near surfaces 2.2: The coordination number rules the game 2.3: Surface science, a source of information for nanoscience 2.4: Particle size and microstrain 2.5: Biomimetics: nature as a source of inspiration for strategies in nanotechnology 3: Geometric structure, magic numbers, and coordination numbers of small clusters 3.1: The consequences of the range of the radial potential energy function 3.2: Magic numbers by geometric shells closing 3.3: Magic numbers by electronic shells closing 3.4: Cohesive energy and coordination number 4: Electronic structure 4.1: Discrete states versus band structure 4.2: The effects of dimensionality and symmetry in quantum structures 4.3: The nonmetal-to-metal transition 4.4: Work function, ionisation potential and electron affinity 4.5: Electronic structure of semiconductor and metal clusters 4.6: A semiconductor quantum dot electronic device 5: Magnetic properties 5.1: A brief primer on magnetism 5.2: The concept of frustration 5.3: Magnetic properties of small clusters 5.4: Ferromagnetic order in thin films and monoatomic chains 5.5: Finite size effects in magnetic resonance detection 6: Thermodynamics for finite size systems 6.1: Limitations of macroscopic thermodynamics 6.2: The basics of capillarity 6.3: Phase transitions of free liquid droplets 6.4: The Lotus effect 6.5: Classical nucleation theory 6.6: Shape control of nanocrystals 6.7: Size effects on ion conduction in solids 6.8: Principles of self-assembly 7: Adsorption, phase behaviour and dynamics of surface layers and in pores 7.1: Surface adsorption and pore condensation 7.2: Adsorption hysteresis and pore criticality 7.3: The melting point of pore-confined matter 7.4: Layering transitions 7.5: Liquid coexistence and ionic solutions in pores 7.6: The effect of pressure 7.7: Dynamics in pores 8: Phase transitions and dynamics of clusters 8.1: Melting point and melting enthalpy 8.2: Dynamics of metal clusters 9: Phase transitions of two-dimensional systems 9.1: Melting of thin layers 9.2: Structural phase transitions in thin layers 9.3: Glass transition of a polymer thin film 9.4: Surface alloy phases 10: Catalysis by metallic nanoparticles 10.1: Some general principles of catalysis by nanoparticles 10.2: Size-controlled catalytic clusters 10.3: Shape dependent catalytic activity 10.4: The effect of strain 10.5: The effect of alloying 10.6: Metal-support interaction 10.7: The influence of external bias voltage 11: Applications: facts and fictions 11.1: Nanomaterials 11.2: Nanotechnology 11.3: Hopes, hazards and hype

180 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: The research focuses on the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001.
Abstract: Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related to water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy workedmore » as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less

2,921 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explain the transport properties and the swelling behaviour of NAFION and different sulfonated polyetherketones in terms of distinct differences on the microstructures and in the p K a of the acidic functional groups.

2,755 citations

Posted Content
TL;DR: A review of the toxicity of nanoparticles is presented in this paper, with the goal of informing public health concerns related to nanoscience while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them.
Abstract: This review is written with the goal of informing public health concerns related to nanoscience, while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to nanoparticles and dust from natural sources and human activities, the recent development of industry and combustion-based engine transportation profoundly increasing anthropogenic nanoparticulate pollution. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Among diseases associated with nanoparticles are asthma, bronchitis, lung cancer, neurodegenerative diseases (such as Parkinson`s and Alzheimer`s diseases), Crohn`s disease, colon cancer. Nanoparticles that enter the circulatory system are related to occurrence of arteriosclerosis, and blood clots, arrhythmia, heart diseases, and ultimately cardiac death. We show that possible adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, and agglomeration state. The faster we will understand their causes and mechanisms, the more likely we are to find cures for diseases associated with nanoparticle exposure. We foresee a future with better-informed, and hopefully more cautious manipulation of engineered nanomaterials, as well as the development of laws and policies for safely managing all aspects of nanomaterial manufacturing, industrial and commercial use, and recycling.

2,652 citations