scispace - formally typeset
Search or ask a question
Author

Emily C. Baechler

Bio: Emily C. Baechler is an academic researcher from University of Minnesota. The author has contributed to research in topics: Lupus erythematosus & Gene expression profiling. The author has an hindex of 29, co-authored 42 publications receiving 8706 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Global gene expression profiling of peripheral blood mononuclear cells is used to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.
Abstract: Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression “signature” served as a marker for more severe disease involving the kidneys, hematopoetic cells, and/or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.

2,075 citations

Journal ArticleDOI
TL;DR: The results show that numerous genes, some with known immune-related functions, predispose to SLE, and evidence of association with replication is found at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases.
Abstract: Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (lambda(S) = approximately 30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 x 10(-7) or =9 other loci (P < 2 x 10(-7)). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.

1,253 citations

Journal ArticleDOI
TL;DR: The results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.
Abstract: Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 x 10(-8)): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P< or = 1 x 10(-5). A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 x 10(-3)) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.

755 citations

Journal ArticleDOI
TL;DR: Genotyped 525 independent North American white individuals with systemic lupus erythematosus and compared the results with data generated from 1,961 white control individuals provide compelling evidence that PTPN22 plays a fundamental role in regulating the immune system and the development of autoimmunity.
Abstract: We genotyped 525 independent North American white individuals with systemic lupus erythematosus (SLE) for the PTPN22 R620W polymorphism and compared the results with data generated from 1,961 white control individuals. The R620W SNP was associated with SLE (genotypic P=.00009), with estimated minor (T) allele frequencies of 12.67% in SLE cases and 8.64% in controls. A single copy of the T allele (W620) increases risk of SLE (odds ratio [OR]=1.37; 95% confidence interval [CI] 1.07–1.75), and two copies of the allele more than double this risk (OR=4.37; 95% CI 1.98–9.65). Together with recent evidence showing association of this SNP with type 1 diabetes and rheumatoid arthritis, these data provide compelling evidence that PTPN22 plays a fundamental role in regulating the immune system and the development of autoimmunity.

664 citations

Journal ArticleDOI
TL;DR: A commonIRF5 haplotype driving elevated expression of multiple unique isoforms of IRF5 is an important genetic risk factor for SLE, establishing a causal role for type I IFN pathway genes in human autoimmunity.
Abstract: Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by activation of the type I interferon (IFN) pathway. Here we convincingly replicate association of the IFN regulatory factor 5 (IRF5) rs2004640 T allele with SLE in four independent case-control cohorts (P = 4.4 x 10(-16)) and by family-based transmission disequilibrium test analysis (P = 0.0006). The rs2004640 T allele creates a 5' donor splice site in an alternate exon 1 of IRF5, allowing expression of several unique IRF5 isoforms. We also identify an independent cis-acting variant associated with elevated expression of IRF5 and linked to the exon 1B splice site. Haplotypes carrying the variant associated with elevated expression and lacking the exon 1B donor site do not confer risk of SLE. Thus, a common IRF5 haplotype driving elevated expression of multiple unique isoforms of IRF5 is an important genetic risk factor for SLE, establishing a causal role for type I IFN pathway genes in human autoimmunity.

652 citations


Cited by
More filters
Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

7,797 citations

Journal ArticleDOI
TL;DR: Systemic lupus erythematosus is a relapsing and remitting disease, and treatment aims are threefold: managing acute periods of potentially life-threatening ill health, minimizing the risk of flares during periods of relative stability, and controlling the less life- threatening, but often incapacitating day to day symptoms.
Abstract: Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease, which is autoimmune in origin and is characterized by the presence of autoantibodies directed against nuclear antigens. It is a multi-system disease, and patients can present in vastly different ways. Prevalence varies with ethnicity, but is estimated to be about 1 per 1000 overall with a female to male ratio of 10:1. The clinical heterogeneity of this disease mirrors its complex aetiopathogenesis, which highlights the importance of genetic factors and individual susceptibility to environmental factors. SLE can affect every organ in the body. The most common manifestations include rash, arthritis and fatigue. At the more severe end of the spectrum, SLE can cause nephritis, neurological problems, anaemia and thrombocytopaenia. Over 90% of patients with SLE have positive anti-nuclear antibodies (ANA). Significant titres are accepted to be of 1:80 or greater. SLE is a relapsing and remitting disease, and treatment aims are threefold: managing acute periods of potentially life-threatening ill health, minimizing the risk of flares during periods of relative stability, and controlling the less life-threatening, but often incapacitating day to day symptoms. Hydroxychloroquine and non-steroidal anti-inflammatory drugs are used for milder disease; corticosteroids and immunosuppressive therapies are generally reserved for major organ involvement; anti-CD20 monoclonal antibody is now used in patients with severe disease who has not responded to conventional treatments. Despite enormous improvements in prognosis since the introduction of corticosteroids and immunosuppressive drugs, SLE continues to have a significant impact on the mortality and morbidity of those affected.

4,376 citations

Journal ArticleDOI
TL;DR: The current understanding of IFN‐γ ligand, receptor, ignal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophages function during infection are reviewed.
Abstract: Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.

3,589 citations

Journal ArticleDOI
01 Jun 2007-Science
TL;DR: The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.
Abstract: New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D-in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1-and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.

2,813 citations

Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: A crucial role is revealed for the autophagy pathway and proteins in immunity and inflammation, and they balance the beneficial and detrimental effects of immunity andinflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.
Abstract: Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy - the 'autophagy proteins' - orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.

2,757 citations