scispace - formally typeset
Search or ask a question
Author

Emin Gün Sirer

Bio: Emin Gün Sirer is an academic researcher from Cornell University. The author has contributed to research in topics: Cryptocurrency & Scalability. The author has an hindex of 48, co-authored 131 publications receiving 12939 citations. Previous affiliations of Emin Gün Sirer include Ithaca College & University of Washington.


Papers
More filters
Book ChapterDOI
03 Mar 2014
TL;DR: The Bitcoin cryptocurrency records its transactions in a public log called the blockchain, and conventional wisdom asserts that the mining protocol is incentive-compatible and secure against colluding minority groups.
Abstract: The Bitcoin cryptocurrency records its transactions in a public log called the blockchain. Its security rests critically on the distributed protocol that maintains the blockchain, run by participants called miners. Conventional wisdom asserts that the mining protocol is incentive-compatible and secure against colluding minority groups, that is, it incentivizes miners to follow the protocol as prescribed.

1,092 citations

Proceedings ArticleDOI
03 Dec 1995
TL;DR: This paper describes the motivation, architecture and performance of SPIN, an extensible operating system that provides an extension infrastructure together with a core set of extensible services that allow applications to safely change the operating system's interface and implementation.
Abstract: This paper describes the motivation, architecture and performance of SPIN, an extensible operating system. SPIN provides an extension infrastructure, together with a core set of extensible services, that allow applications to safely change the operating system's interface and implementation. Extensions allow an application to specialize the underlying operating system in order to achieve a particular level of performance and functionality. SPIN uses language and link-time mechanisms to inexpensively export fine-grained interfaces to operating system services. Extensions are written in a type safe language, and are dynamically linked into the operating system kernel. This approach offers extensions rapid access to system services, while protecting the operating system code executing within the kernel address space. SPIN and its extensions are written in Modula-3 and run on DEC Alpha workstations.

1,054 citations

Posted Content
TL;DR: In this paper, the authors show that the Bitcoin protocol is not incentive-compatible and present an attack with which colluding miners obtain a revenue larger than their fair share, which can have significant consequences for Bitcoin: Rational miners will prefer to join the selfish miners, and the colluding group will increase in size until it becomes a majority.
Abstract: The Bitcoin cryptocurrency records its transactions in a public log called the blockchain. Its security rests critically on the distributed protocol that maintains the blockchain, run by participants called miners. Conventional wisdom asserts that the protocol is incentive-compatible and secure against colluding minority groups, i.e., it incentivizes miners to follow the protocol as prescribed. We show that the Bitcoin protocol is not incentive-compatible. We present an attack with which colluding miners obtain a revenue larger than their fair share. This attack can have significant consequences for Bitcoin: Rational miners will prefer to join the selfish miners, and the colluding group will increase in size until it becomes a majority. At this point, the Bitcoin system ceases to be a decentralized currency. Selfish mining is feasible for any group size of colluding miners. We propose a practical modification to the Bitcoin protocol that protects against selfish mining pools that command less than 1/4 of the resources. This threshold is lower than the wrongly assumed 1/2 bound, but better than the current reality where a group of any size can compromise the system.

900 citations

Book ChapterDOI
22 Feb 2016
TL;DR: In this article, the authors analyze how fundamental and circumstantial bottlenecks in Bitcoin limit the ability of its current peer-to-peer overlay network to support substantially higher throughputs and lower latencies.
Abstract: The increasing popularity of blockchain-based cryptocurrencies has made scalability a primary and urgent concern. We analyze how fundamental and circumstantial bottlenecks in Bitcoin limit the ability of its current peer-to-peer overlay network to support substantially higher throughputs and lower latencies. Our results suggest that reparameterization of block size and intervals should be viewed only as a first increment toward achieving next-generation, high-load blockchain protocols, and major advances will additionally require a basic rethinking of technical approaches. We offer a structured perspective on the design space for such approaches. Within this perspective, we enumerate and briefly discuss a number of recently proposed protocol ideas and offer several new ideas and open challenges.

831 citations

Posted Content
TL;DR: The Bitcoin-NG protocol as mentioned in this paper is a new blockchain protocol designed to scale based on Bitcoin's blockchain protocol, which is robust to extreme churn, and shares the same trust model obviating qualitative changes to the ecosystem.
Abstract: Cryptocurrencies, based on and led by Bitcoin, have shown promise as infrastructure for pseudonymous online payments, cheap remittance, trustless digital asset exchange, and smart contracts. However, Bitcoin-derived blockchain protocols have inherent scalability limits that trade-off between throughput and latency and withhold the realization of this potential. This paper presents Bitcoin-NG, a new blockchain protocol designed to scale. Based on Bitcoin's blockchain protocol, Bitcoin-NG is Byzantine fault tolerant, is robust to extreme churn, and shares the same trust model obviating qualitative changes to the ecosystem. In addition to Bitcoin-NG, we introduce several novel metrics of interest in quantifying the security and efficiency of Bitcoin-like blockchain protocols. We implement Bitcoin-NG and perform large-scale experiments at 15% the size of the operational Bitcoin system, using unchanged clients of both protocols. These experiments demonstrate that Bitcoin-NG scales optimally, with bandwidth limited only by the capacity of the individual nodes and latency limited only by the propagation time of the network.

761 citations


Cited by
More filters
Journal ArticleDOI
19 Oct 2003
TL;DR: Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality, considerably outperform competing commercial and freely available solutions.
Abstract: Numerous systems have been designed which use virtualization to subdivide the ample resources of a modern computer. Some require specialized hardware, or cannot support commodity operating systems. Some target 100% binary compatibility at the expense of performance. Others sacrifice security or functionality for speed. Few offer resource isolation or performance guarantees; most provide only best-effort provisioning, risking denial of service.This paper presents Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality. This is achieved by providing an idealized virtual machine abstraction to which operating systems such as Linux, BSD and Windows XP, can be ported with minimal effort.Our design is targeted at hosting up to 100 virtual machine instances simultaneously on a modern server. The virtualization approach taken by Xen is extremely efficient: we allow operating systems such as Linux and Windows XP to be hosted simultaneously for a negligible performance overhead --- at most a few percent compared with the unvirtualized case. We considerably outperform competing commercial and freely available solutions in a range of microbenchmarks and system-wide tests.

6,326 citations

Proceedings ArticleDOI
14 Oct 2007
TL;DR: D Dynamo is presented, a highly available key-value storage system that some of Amazon's core services use to provide an "always-on" experience and makes extensive use of object versioning and application-assisted conflict resolution in a manner that provides a novel interface for developers to use.
Abstract: Reliability at massive scale is one of the biggest challenges we face at Amazon.com, one of the largest e-commerce operations in the world; even the slightest outage has significant financial consequences and impacts customer trust. The Amazon.com platform, which provides services for many web sites worldwide, is implemented on top of an infrastructure of tens of thousands of servers and network components located in many datacenters around the world. At this scale, small and large components fail continuously and the way persistent state is managed in the face of these failures drives the reliability and scalability of the software systems.This paper presents the design and implementation of Dynamo, a highly available key-value storage system that some of Amazon's core services use to provide an "always-on" experience. To achieve this level of availability, Dynamo sacrifices consistency under certain failure scenarios. It makes extensive use of object versioning and application-assisted conflict resolution in a manner that provides a novel interface for developers to use.

4,349 citations

ReportDOI
13 Aug 2004
TL;DR: This second-generation Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, and a practical design for location-hidden services via rendezvous points.
Abstract: We present Tor, a circuit-based low-latency anonymous communication service. This second-generation Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, and a practical design for location-hidden services via rendezvous points. Tor works on the real-world Internet, requires no special privileges or kernel modifications, requires little synchronization or coordination between nodes, and provides a reasonable tradeoff between anonymity, usability, and efficiency. We briefly describe our experiences with an international network of more than 30 nodes. We close with a list of open problems in anonymous communication.

3,960 citations

Journal ArticleDOI
01 Jan 2015
TL;DR: This paper presents an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications, and presents the key building blocks of an SDN infrastructure using a bottom-up, layered approach.
Abstract: The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

3,589 citations

Journal ArticleDOI
TL;DR: The conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.
Abstract: Motivated by the recent explosion of interest around blockchains, we examine whether they make a good fit for the Internet of Things (IoT) sector. Blockchains allow us to have a distributed peer-to-peer network where non-trusting members can interact with each other without a trusted intermediary, in a verifiable manner. We review how this mechanism works and also look into smart contracts—scripts that reside on the blockchain that allow for the automation of multi-step processes. We then move into the IoT domain, and describe how a blockchain-IoT combination: 1) facilitates the sharing of services and resources leading to the creation of a marketplace of services between devices and 2) allows us to automate in a cryptographically verifiable manner several existing, time-consuming workflows. We also point out certain issues that should be considered before the deployment of a blockchain network in an IoT setting: from transactional privacy to the expected value of the digitized assets traded on the network. Wherever applicable, we identify solutions and workarounds. Our conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.

3,129 citations