scispace - formally typeset
Search or ask a question
Author

Emine Ulku Saritas

Bio: Emine Ulku Saritas is an academic researcher from Bilkent University. The author has contributed to research in topics: Magnetic particle imaging & Iterative reconstruction. The author has an hindex of 25, co-authored 94 publications receiving 2446 citations. Previous affiliations of Emine Ulku Saritas include University of California, Berkeley & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: X-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI, which predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.
Abstract: One quarter of all iodinated contrast X-ray clinical imaging studies are now performed on Chronic Kidney Disease (CKD) patients. Unfortunately, the iodine contrast agent used in X-ray is often toxic to CKD patients' weak kidneys, leading to significant morbidity and mortality. Hence, we are pioneering a new medical imaging method, called Magnetic Particle Imaging (MPI), to replace X-ray and CT iodinated angiography, especially for CKD patients. MPI uses magnetic nanoparticle contrast agents that are much safer than iodine for CKD patients. MPI already offers superb contrast and extraordinary sensitivity. The iron oxide nanoparticle tracers required for MPI are also used in MRI, and some are already approved for human use, but the contrast agents are far more effective at illuminating blood vessels when used in the MPI modality. We have recently developed a systems theoretic framework for MPI called x-space MPI, which has already dramatically improved the speed and robustness of MPI image reconstruction. X-space MPI has allowed us to optimize the hardware for fi ve MPI scanners. Moreover, x-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI. Currently MPI nanoparticles have diameters in the 10-20 nanometer range, enabling millimeter-scale resolution in small animals. X-space MPI theory predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.

266 citations

Journal ArticleDOI
TL;DR: Magnetic Particle Imaging shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo.

261 citations

Journal ArticleDOI
TL;DR: A reduced FOV single‐shot diffusion‐weighted echo‐planar imaging (ss‐DWEPI) method is proposed, in which a 2D spatially selective echo-planar RF excitation pulse and a 180° refocusing pulse reduce the FOV in the phase‐encode (PE) direction, while suppressing the signal from fat simultaneously.
Abstract: Single-shot echo-planar imaging (ss-EPI) has not been used widely for diffusion-weighted imaging (DWI) of the spinal cord, because of the magnetic field inhomogeneities around the spine, the small cross-sectional size of the spinal cord, and the increased motion in that area due to breathing, swallowing, and cerebrospinal fluid (CSF) pulsation. These result in artifacts with the usually long readout duration of the ss-EPI method. Reduced field-of-view (FOV) methods decrease the required readout duration for ss-EPI, thereby enabling its practical application to imaging of the spine. In this work, a reduced FOV single-shot diffusion-weighted echo-planar imaging (ss-DWEPI) method is proposed, in which a 2D spatially selective echo-planar RF excitation pulse and a 180 degrees refocusing pulse reduce the FOV in the phase-encode (PE) direction, while suppressing the signal from fat simultaneously. With this method, multi slice images with higher in-plane resolutions (0.94 x 0.94 mm(2) for sagittal and 0.62 x 0.62 mm(2) for axial images) are achieved at 1.5 T, without the need for a longer readout.

234 citations

Journal ArticleDOI
TL;DR: The first MPI cell tracking study is reported, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain.
Abstract: We demonstrate that Magnetic Particle Imaging (MPI) enables monitoring of cellular grafts with high contrast, sensitivity, and quantitativeness. MPI directly detects the intense magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI is safe, noninvasive and offers superb sensitivity, with great promise for clinical translation and quantitative single-cell tracking. Here we report the first MPI cell tracking study, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain.

230 citations

Journal ArticleDOI
TL;DR: New tracers tailored to MPI's unique physics are described, synthesized using an organic-phase process and functionalized to ensure biocompatibility and adequate in vivo circulation time.
Abstract: Magnetic particle imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on tracers optimized for MRI ${\rm T}2^ {\ast} $ -weighted imaging that are sub-optimal for MPI. Here, we describe new tracers tailored to MPI's unique physics, synthesized using an organic-phase process and functionalized to ensure biocompatibility and adequate in vivo circulation time. Tailored tracers showed up to 3 $\,\times$ greater signal-to-noise ratio and better spatial resolution than existing commercial tracers in MPI images of phantoms.

189 citations


Cited by
More filters
Journal ArticleDOI

1,073 citations

Journal ArticleDOI
TL;DR: This work addresses the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-the authors stratify nanommaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or nuclear properties.
Abstract: In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality’s existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality—we stratify nanomaterials on the basis of thei...

816 citations

Journal ArticleDOI
01 Aug 1952-Nature
TL;DR: Lang as discussed by the authors reviewed Lang's work in the Journal of Scientific Instruments (JSI) and Supplement No 1, 1951 Pp xvi + 388 + iii + 80 (London: Institute of Physics, 1951).
Abstract: Journal of Scientific Instruments Editor: Dr H R Lang Vol 28 and Supplement No 1, 1951 Pp xvi + 388 + iii + 80 (London: Institute of Physics, 1951) Bound, £3 12s; unbound, £3

725 citations

Journal ArticleDOI
10 Jun 2010-Nature
TL;DR: The ofMRI approach provides an empirical foundation for the widely-used fMRI BOLD signal, and the features of ofMRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.
Abstract: Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIalpha-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (of MRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that of MRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this of MRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of of MRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.

651 citations

Journal ArticleDOI
TL;DR: The synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre‐) clinical use in diagnostic, therapeutic and theranostic settings, are summarized.

618 citations